

C# 7 and .NET Core 2.0 High Performance

Build highly performant, multi-threaded, and concurrent applications using C# 7 and
.NET Core 2.0

Ovais Mehboob Ahmed Khan

BIRMINGHAM - MUMBAI

C# 7 and .NET Core 2.0 High
Performance
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Merint Mathew
Acquisition Editor: Chaitanya Nair
Content Development Editor: Anugraha Arunagiri
Technical Editor: Jijo Maliyekal
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tania Dutta
Production Coordinator: Deepika Naik

First published: April 2018

Production reference: 1240418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-004-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

https://mapt.io/

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Ovais Mehboob Ahmed Khan is a seasoned programmer and solution architect with
over 14 years of software development experience. He has worked in organizations
across Pakistan, the USA, and the Middle East. Currently, he is working for a
government entity based in Dubai. A Microsoft MVP, he specializes mainly in
Microsoft .NET, the cloud and web development. He has published technical articles
on MSDN, TechNet, personal blog, and he has authored two other books published by
Packt: JavaScript for .NET Developers and Enterprise Application Architecture with
.NET Core.

I would like to thank my family for supporting me, especially my mother, wife, and brother, who have always encouraged
me in every goal of my life. My father, may he rest in peace, would have been proud of my achievements.

About the reviewer
Jalpesh Vadgama has been working on technologies like .NET such as MVC,
ASP.NET Core, Web Forms, and REST APIs for over 14 years now. Experienced in
open source server-side technologies such as Node.js, he has worked with frameworks
such as jQuery, Knockout.js, Angular, React.js and Vue. He has been awarded the
Microsoft MVP award six times for his technical contribution to .NET and has
delivered over 50 Enterprise-level applications using .NET technologies. He has also
been using software development methodologies such as Agile, Scrum, and Waterfall
for quite a while.

I would like to thank my wife and family for their support.

Packt is searching for authors
like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Title Page

Copyright and Credits

C# 7 and .NET Core 2.0 High Performance

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Download the color images

Conventions used

Get in touch

Reviews

1. What's New in .NET Core 2 and C# 7?

Evolution of .NET

New improvements in .NET Core 2.0

Performance improvements

RyuJIT compiler in .NET Core

Profile guided optimization

Simplified packaging

Upgrading path from .NET Core 1.x to 2.0

1. Install .NET Core 2.0

2. Upgrade TargetFramework

3. Update .NET Core SDK version

4. Update .NET Core CLI

Changes in ASP.NET Core Identity

Exploring .NET Core CLI and New Project Templates

Understanding .NET Standard

Versioning of .NET Standard

New improvements in .NET Standard 2.0

More APIs in .NET Standard 2.0

Compatibility mode

Creating a .NET Standard library

What comes with ASP.NET Core 2.0

ASP.NET Core Razor Pages

Automatic Page and View compilation on publishing

Razor support for C# 7.1

Simplified configuration for Application Insights

Pooling connections in Entity Framework Core 2.0

New features in C# 7.0

Tuples

Patterns

Constant pattern

Type pattern

Var pattern

Reference returns

Expression bodied member extended

Creating Local Functions

Out variables

Async Main

Writing quality code

Summary

2. Understanding .NET Core Internals and Measuring Performance

.NET Core internals

CoreFX

CoreCLR

Understanding MSIL, CLI, CTS, and CLS

How the CLR works

From compilation to execution – Under the hood

Garbage collection

Generations in GC

.NET Native and JIT compilation

Utilizing multiple cores of the CPU for high performance

How releasing builds increases performance

Benchmarking .NET Core 2.0 applications

Exploring BenchmarkDotNet

How it works

Setting parameters

Memory diagnostics using BenchmarkDotnet

Adding configurations

Summary

3. Multithreading and Asynchronous Programming in .NET Core

Multithreading versus asynchronous programming

Multithreading in .NET Core

Multithreading caveats

Threads in .NET Core

Creating threads in .NET Core

Thread lifetime

The thread pool in .NET

Thread synchronization

Monitors

Task parallel library (TPL)

Creating a task using TPL

Task-based asynchronous pattern (TAP)

Naming convention

Return type

Parameters

Exceptions

Task status

Task cancellation

Task progress reporting

Implementing TAP using compilers

Implementing TAP with greater control over Task

Design patterns for parallel programming

Pipeline pattern

Dataflow pattern

Producer/consumer pattern

Parallel.ForEach

Parallel LINQ (PLINQ)

Summary

4. Data Structures and Writing Optimized Code in C#

What are data structures?

Understanding the use of Big O notation to measure the performance and complexity of an algor

ithm

Logarithms

Choosing the right data structure for performance optimization

Arrays

Lists

Stacks

Queue

Linked lists

Singly linked lists

Doubly linked lists

Circular linked lists

Dictionaries, hashtables, and hashsets

Generic lists

Best practices in writing optimized code in C#

Boxing and unboxing overhead

String concatenation

Exception handling

For and foreach

Delegates

Summary

5. Designing Guidelines for .NET Core Application Performance

Coding principles

Naming convention

Code comments

One class per file

One logic per method

Design principles

KISS (Keep It Simple, Stupid)

YAGNI (You Aren't Gonna Need It)

DRY (Don't Repeat Yourself)

Separation of Concerns (SoC)

SOLID principles

Single Responsibility Principle

Open Closed principle

Parameters

Inheritance

Composition

Liskov principle

The Interface Segregation principle

The Dependency Inversion principle

Caching

Data structures

Communication

Using lighter interfaces

Minimizing message size

Queuing communication

Resource management

Avoiding improper use of threads

Disposing objects in a timely fashion

Acquiring resources when they are required

Concurrency

Summary

6. Memory Management Techniques in .NET Core

Memory allocation process overview

Analysing CLR internals through the SOS debugger in .NET Core

Memory fragmentation

Avoiding finalizers

Best practices for disposing of objects in .NET Core

Introduction to the IDisposable interface

What are unmanaged resources?

Using IDisposable

When to implement the IDisposable interface

Finalizer and Dispose

Summary

7. Securing and Implementing Resilience in .NET Core Applications

Introduction to resilient applications

Resilient policies

Reactive policies

Implementing the retry pattern

Implementing circuit breaker

Wrapping the circuit breaker with retry

Fallback policy with circuit breaker and retry

Proactive policies

Implementing timeout

Implementing caching

Implementing health checks

Storing sensitive information using Application Secrets

Protecting ASP.NET Core APIs

SSL (Secure Socket Layer)

Enabling SSL in an ASP.NET Core application

Preventing CSRF (Cross-Site Request Forgery) attacks

Reinforcing security headers

Adding the HTTP strict transport security header

Adding the X-Content-Type-Options header

Adding the X-Frame-Options header

Adding the X-Xss-Protection header

Adding the Content-Security-Policy header

Adding the referrer-policy header

Enabling CORS in the ASP.NET Core application

Authentication and authorization

Using ASP.NET Core Identity for authentication and authorization

Authentication

Authorization

Implementing authentication and authorization using the ASP.NET Core Identity framework

Adding more properties in the user table

Summary

8. Microservices Architecture

Microservices architecture

Benefits of microservices architecture

Standard practice when developing microservices

Types of microservices

Stateless microservices

Stateful microservices

DDD

Data manipulation with microservices

Wrapping microservices behind an API gateway

Denormalizing data into a flat schema for read/query purposes

Consistency across business scenarios

Communication with microservices

Database architecture in microservices

Tables per service

Database per service

Challenges in segregating tables or databases per service

What is API composition?

CQRS

Developing microservices architecture with .NET Core

Creating a sample app in .NET Core using microservices architecture

Solution structure

Logical architecture

Developing a Core infrastructure project

Creating the BaseEntity class

The UnitOfWork pattern

Creating a repository interface

Logging

Creating the APIComponents infrastructure project

Developing an identity service for user authorization

OpenIddict connect flows

Creating the identity service project

Implementing the vendor service

Creating a vendor domain

Creating the vendor infrastructure

Creating the vendor service

Implementing the mediator pattern in the vendor service

Deploying microservices on Docker containers

What is Docker?

Using Docker with .NET Core

Running Docker images

Summary

9. Monitoring Application Performance Using Tools

Application performance key metrics

Average response time

Apdex scores

Percentage of errors

Request rate

Throughput/endpoints

CPU and memory usage

Tools and techniques to measure performance

Introducing App Metrics

Setting up App Metrics with ASP.NET Core

Tracking middleware

Adding tracking middleware

Setting up configuration

Adding visual reports

Setting up InfluxDB

Setting up the Windows subsystem for Linux

Installing InfluxDB

Installing Grafana

Adding the InfluxDB dashboard

Configuring InfluxDB

Modifying the Configure and ConfigureServices methods in Startup

Testing the ASP.NET Core App and reporting on the Grafana dashboard

Summary

Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface
The book begins with an introduction to the new features of C# 7 and .NET Core 2.0,
and how they help improve the performance of your application. The book will then
help you understand the core internals of .NET Core, which includes the compilation
process, garbage collection, utilizing multiple cores of the CPU to develop highly-
performant applications, and measuring performance using a powerful library for
benchmarking applications named BenchmarkDotNet. We will learn about developing
applications and programs using multithreading and asynchronous programming, and
how to use those concepts to build efficient applications for faster execution. Next,
you'll understand the importance of data structure optimization and how it can be used
efficiently. We move on to the patterns and best practices to use when designing
applications in .NET Core, along with how to utilize memory in an effective way and
avoid memory leakage. After that, we'll talk about implementing security and
resiliency in .NET Core applications, and we'll use the Polly framework to implement
a circuit breaker, and retry and fallback patterns, along with certain middleware to
harden the HTTP pipeline. We'll also implement security such as authorization and
authentication using the Identity framework. Moving ahead, we will learn about the
microservices architecture and see how we can use it to create applications that are
modular, highly scalable, and independently deployable. We end with App Metrics,
and will learn how to use it to monitor the performance of your application.

Who this book is for
This book is for .NET developers who want to improve the speed of their application's
code or who simply want to take their skills to the next level, where they can develop
and produce quality applications that are not only performant but also adhere to the
industry best practices. Basic C# knowledge is assumed.

What this book covers
Chapter 1, What's New in .NET Core 2 and C# 7?, discusses the .NET Core Framework
and covers some improvements that were introduced with .NET Core 2.0. We will also
look into the new features of C# 7 and see how we can write cleaner code and simplify
syntactic expressions. Lastly, we cover the topic of writing quality code. We'll see how
we can leverage the Code analysis feature of Visual Studio 2017 to add analyzers to
our project and improve code quality.

Chapter 2, Understanding .NET Core Internals and Measuring Performance, discusses
the core concepts of .NET Core, including the compilation process, garbage collection,
building highly-performant .NET Core applications utilizing multiple cores of the
CPU, and publishing an application using a release build. We will also explore the
benchmarking tool that is highly used for code optimization and provides results
specific to in-memory objects.

Chapter 3, Multithreading and Asynchronous Programming in .NET Core, explores the
core fundamentals of multithreaded and asynchronous programming. The chapter
starts with the basic differences between multithreaded and asynchronous
programming and walks you through the core concepts. It explores APIs and how to
use them when writing a multithreaded application. We will learn how the Task
Programming Library can be used to serve asynchronous operations, and how to
implement the Task Asynchronous pattern. Lastly, we will explore parallel
programming techniques and some of the best design patterns being used.

Chapter 4, Data Structures and Writing Optimized Code in C#, outlines the core concepts
of data structures, the types of data structure, and their advantages and disadvantages,
followed by the best possible scenarios to which each data structure is suited. We also
learn about the Big O notation, which is one of the core topics to consider when
writing code and helps developers check the quality of the code and performance.
Lastly, we will look into some best practices and cover topics such as boxing and
unboxing, string concatenation, exception handling, for and foreach, and delegates.

Chapter 5, Designing Guidelines for .NET Core Application Performance, showcases
some coding principles that make application code look clean and easy to understand.
If the code is clean, it offers other developers a way to understand it completely and
helps in many other ways. We will learn some basic design principles that are
considered to be part of the core principles when designing applications. Principles
such as KISS, YAGNI, DRY, Separation of Concerns, and SOLID are highly essential
in software design, and caching and choosing the right data structure have a significant

impact on performance, and can improve performance if they are properly used.
Lastly, we will learn some best practices that should be considered when handling
communication, resource management, and concurrency.

Chapter 6, Memory Management Techniques in .NET Core, outlines the underlying
process of how memory management is done in .NET. We will explore the debugging
tool, which can be used by developers to investigate the object's memory allocation on
the heap. We will also learn about memory fragmentation, finalizers, and how to
implement a dispose pattern to clean up resources by implementing the IDisposable
interface.

Chapter 7, Securing and Implementing Resilience in .NET Core Applications, takes you
through resiliency, which is a very important factor when developing highly-
performant applications in .NET Core. We will learn different policies and use the
Polly framework to use those policies in .NET Core. We will also learn about safe
storage mechanisms and how to use them in the development environment in order to
keep sensitive information separate from the project repository. At the end of this
chapter, we will learn some security fundamentals, which include SSL, CSRF, CORS,
security headers, and the ASP.NET Core Identity framework, in order to protect
ASP.NET Core applications.

Chapter 8, Microservices Architecture, looks at the most quickly evolving software
architecture for developing highly performant and scalable applications for the cloud
based on microservices. We will learn some of the core fundamentals of the
microservices architecture, its benefits, and patterns and practices used when designing
the architecture. We will discuss certain challenges faced when decomposing
enterprise applications into the microservices architecture style and learn patterns such
as API composition and CQRS in order to address them. Later in the chapter, we will
develop a basic application in .NET Core and discuss the solution's structure and the
components of microservices. Then we will develop identity and vendor services.

Chapter 9, Monitoring Application Performance Using Tools, dives into key
performance metrics that are essential for monitoring an application's performance.
We will explore and set up App Metrics, which is a free tool that is cross-platform and
provides various extensions that can be used to achieve extensive reporting. We will
go through a step-by-step guide on how to configure and set up App Metrics and
related components, such as InfluxDb and Grafana, which is used to store and view
telemetry in the Grafana web-based tool and integrate it with ASP.NET Core
application.

To get the most out of this book
The readers should be equipped with the following configurations of the environment:

1. Development Environment: Visual Studio 2015/2017 Community Edition
2. Execution Environment: .NET Core
3. OS Environment: Windows or Linux

Download the example code files
You can download the example code files for this book from your account at www.packtpu
b.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/
C-Sharp-7-and-NET-Core-2-High-Performance/. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/C-Sharp-7-and-NET-Core-2-High-Performance/
https://github.com/PacktPublishing/

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/CShar
p7andNETCore2HighPerformance_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/CSharp7andNETCore2HighPerformance_ColorImages.pdf

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk on
your system."

A block of code is set as follows:

public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseMetrics()

 .UseStartup<Startup>()

 .Build();

Any command-line input or output is written as follows:

Install-Package App.Metrics

Install-Pacakge App.Metrics.AspnetCore.Mvc

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please leave a review. Once you have read and used this book, why not leave a review
on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback on their book. Thank
you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

What's New in .NET Core 2 and
C# 7?
.NET Core is a development platform by Microsoft that runs cross-platform and is
maintained by Microsoft and the community at GitHub. It is the most emergent and
popular framework in development communities due to its performance and platform
portability. It targets every developer that can develop any application for any platform
that includes web, cloud, mobile, embedded, and IoT scenarios.

With .NET Core, we can develop applications using C#, F#, and now VB.NET as well.
However, C# is the most widely used language among developers.

In this chapter, you will learn the following topics:

Performance improvements in .NET Core 2.0
Upgrading the path from .NET Core 1.x to 2.0
.NET Standard 2.0
What comes with ASP.NET Core 2.0
New features in C# 7.0

Evolution of .NET
In early 2002, when Microsoft first introduced the .NET Framework, it targeted
developers who were working on classic ASP or VB 6 platforms since they didn't have
any compelling framework for developing enterprise-level applications. With the
release of the .NET Framework, developers had a platform to develop applications and
could choose any of the languages from VB.NET, C#, and F#. Irrespective of the
language chosen, the code is interoperable, and developers can create a project with
VB.NET and reference it in their C# or F# project and vice versa.

The core component of .NET Framework includes Common Language Runtime
(CLR), Framework Class Libraries (FCL), Base Class Libraries (BCL), and a set
of application models. New features and patches have been introduced with the newer
version of the .NET Framework, which comes with the new release of Windows, and
developers have had to wait for a year or so to get those improvements. Every team at
Microsoft worked on a different application model, and each team had to wait for the
date when the new framework was released to port their fixes and improvements.
Windows Forms and Web Forms were the primary application models at that time that
were widely used by .NET developers.

When Web Forms was first introduced, it was a breakthrough which attracted both
web developers who worked on Classic ASP and desktop application developers who
worked on Visual Basic 6.0. The developer experience was appealing and provided a
decent set of controls that could easily be dragged and dropped to the screen, followed
to their events and properties that could be set either through the view file (.aspx) or
code-behind files. Later on, Microsoft introduced the Model View Controller (MVC)
application model that implemented the separation of concerns design principle, so
that View, Model, and Controller are separate entities. The View is the user interface
that renders the Model, where the Model represents the business entity and holds the
data, and the Controller that handles the request and updates the model and injects it
into the View. MVC was a breakthrough that let developers write cleaner code and
bind their model with the HTML controls using model binding. With the passage of
time, more features were added and the core .NET web assembly System.Web became
quite big and bloated, and contained lots of packages and APIs that were not always
useful in every type of application. However, with .NET, several groundbreaking
changes were introduced and System.Web got split into NuGet packages that can be
referenced and added individually based on requirements.

.NET Core (codename .NET vNext) was first introduced in 2014, and the following
are the core benefits of using .NET Core:

Benefit Description

Cross
Platform .NET Core can run on Windows, Linux, and macOS

Host
Agnostic

.NET Core on the server side is not dependent on IIS and, with two
lightweight servers, Kestrel and WebListener, it can be self-hosted as a
Console application and can be also gelled with mature servers such as
IIS, Apache, and others through a reverse proxy option

Modular Ships as NuGet packages

Open
Source

The entire source code is released as open source via the .NET
Foundation

CLI
tooling

Command line tools to create, build, and run projects from the
command line

.NET Core is a cross-platform, open-source framework that implements .NET
Standard. It provides a runtime known as .NET Core CLR, framework class libraries,
which are primitive libraries known as CoreFX, and APIs that are similar to what
.NET Framework has, but have a smaller footprint (lesser dependencies on other
assemblies):

.NET Core provides flexible deployment options as follows:

Framework-Dependent Deployment (FDD): needs .NET Core SDK to be
installed on the machine
Self-Contained Deployment (SCD): No machine-wide installation of .NET Core
SDK is needed on the machine and .NET Core CLR and framework class
libraries are part of the application package

To install .NET Core 2.0, you can navigate to the following link https://www.microsoft.com/net/core and go through
the options for installing it on Windows, Linux, MAC, and Docker.

https://www.microsoft.com/net/core

New improvements in .NET
Core 2.0
The most recent version of .NET Core, 2.0, comes with a number of improvements.
.NET Core 2.0 is the fastest version of all times and can run on multiple platforms
including various Linux distros, macOS (operating system), and Windows.

Distros stands for Linux distribution (often abbreviated as distro), and it is an operating system made from a
software collection, which is based upon the Linux kernel and, often, a package management system.

Performance improvements
.NET Core is more robust and performance efficient and, since it's open source, the
Microsoft team with other community members are bringing more improvements.

The following are the improvements that are part of .NET Core 2.0.

RyuJIT compiler in .NET Core
RyuJIT is a next-generation JIT compiler that is a complete rewrite of the Just In
Time (JIT) compiler and generates a lot more efficient native machine code. It is
twice as fast as the previous 64-bit compiler and provides 30% faster compilation.
Initially, it runs on only X64 architectures, but now it supports X86 as well and
developers can use the RyuJIT compiler for both X64 and X86. .NET Core 2.0 uses
RyuJIT for both X86 and X64 platforms.

Profile guided optimization
Profile-guided optimization (PGO) is a compilation technology used by C++
compiler to generate optimized code. It applies to the internal native compiled
components of the runtime and JIT. It performs compilation in two steps, which are as
follows:

1. It records the information about code execution.
2. From this information, it generates better code.

The following diagram depicts the life cycle of how the code is compiled:

In .NET Core 1.1, Microsoft already released the PGO for Windows X64 architecture,
but in .NET Core 2.0, this has been added for both Windows X64 and X86
architectures. Also, as per observatory results, it was noted that the actual startup time
is mostly taken by coreclr.dll and clrjit.dll for Windows. Alternatively, on Linux,
there are libcoreclr.so and libclrjit.so, respectively.

Comparing RyuJIT with the old JIT compiler known as JIT32, RyuJIT is more
efficient in code generation. The startup time of the JIT32 was faster than the RyuJIT;
however, the code is not efficient. To overcome the initial startup time taken by the
RyuJIT compiler, Microsoft used PGO, which brought the performance closer to JIT32
performance and achieved both efficient code and performance on startup.

For Linux, the compiler toolchain is different for each distro, and Microsoft is working
on a separate Linux version of .NET that uses the PGO optimizations applicable to all
distros.

Simplified packaging
With .NET Core, we can add libraries to our project from NuGet. All framework and
third-party libraries can be added as NuGet packages. With a large sized application
that refers many libraries, adding each library one by one is a cumbersome process.
.NET Core 2.0 has simplified the packaging mechanism and introduced meta-packages
that can be added as one single package that contains all the assemblies that are linked
to it.

For example, if you wanted to work on ASP.NET Core in .NET Core 2.0, you just
have to add one single package, Microsoft.AspNetCore.All, using NuGet.

The following is the command that will install this package into your project:

Install-Package Microsoft.AspNetCore.All -Version 2.0.0

Upgrading path from .NET
Core 1.x to 2.0
.NET Core 2.0 comes with lots of improvements, and this is the primary reason people
wanted to migrate their existing .NET Core applications from 1.x to 2.0. However,
there is a checklist which we will go through in this topic to ensure smooth migration.

1. Install .NET Core 2.0
First of all, install the .NET Core 2.0 SDK on your machine. It will install the latest
assemblies to your machine, which will help you to execute further steps.

2. Upgrade TargetFramework
This is the most important step, and this is where the different versions need to be
upgraded in the .NET Core project file. Since we know that, with the .csproj type, we
don't have project.json, to modify the framework and other dependencies, we can edit
the existing project using any Visual Studio editor and modify the XML.

The XML Node that needs to be changed is the TargetFramework. For .NET Core 2.0, we
have to change the TargetFramework moniker to netcoreapp2.0, which is shown as follows:

<TargetFramework>netcoreapp2.0</TargetFramework>

Next, you can start building the project which will upgrade the .NET Core
dependencies to 2.0. However, there is a chance of a few of them still referencing the
older version, and upgrading those dependencies needs to be done explicitly using
NuGet package manager.

3. Update .NET Core SDK
version
If you have global.json added to your project, you have to update the SDK version to
2.0.0, which is shown as follows:

{

 "sdk": {

 "version": "2.0.0"

 }

}

4. Update .NET Core CLI
.NET Core CLI is also an important section in your .NET Core project file. When
migrating, you have to upgrade the version of DotNetCliToolReference to 2.0.0, which is
shown as follows:

<ItemGroup>

 <DotNetCliToolReference Include=

 "Microsoft.VisualStudio.Web.CodeGeneration.Tools" Version="2.0.0" />

</ItemGroup>

There might be more tools added depending on whether you are using Entity
Framework Core, User Secrets, and others. You have to update their versions.

Changes in ASP.NET Core
Identity
There have been some more improvements and changes to the ASP.NET Core Identity
model. Some of the classes are renamed and you can find them at: http://docs.microsoft.co
m/en-us/aspnet/core/migration.

http://docs.microsoft.com/en-us/aspnet/core/migration

Exploring .NET Core CLI and
New Project Templates
Command Line Interface (CLI) is a very popular tool is almost all popular
frameworks like Yeoman Generator, Angular, and others. It lends developers access to
execute commands to create, build, and run projects, restore packages, and so on.

.NET CLI provides a toolset with a handful commands that can be executed from the
command line interface to create .NET Core projects, restore dependencies, and build
and run projects. Under the wire, Visual Studio 2015/2017 and Visual Studio Code
even uses this tool to perform different options taken by the developers from their
IDE; for example, to create a new project using .NET CLI, we can run the following
command:

dotnet new

It will list down the available templates and the short name that can be used while
creating the project.

Here is the screenshot containing the list of project templates that can be used to
create/scaffold projects using .NET Core CLI:

And by running the following command, a new ASP.NET Core MVC application will
be created:

dotnet new mvc

The following screenshot shows the provisioning of the new MVC project after
running the preceding command. It creates the project in the same directory where the
command is running and restores all the dependencies:

To install the .NET Core CLI toolset, there are some native installers available for
Windows, Linux, and macOS. These installers can install and set up the .NET CLI
tooling on your machine and developers can run the commands from the CLI.

Here is the list of commands with their descriptions that are provided in the .NET Core
CLI:

Command Description Example

new
Creates a new project based on the template
selected

dotnet new razor

restore
Restores all the dependencies defined in the
project

dotnet restore

build Builds the project dotnet build

run
Runs the source code without any additional
compile

dotnet run

publish Packages the application files into a folder for dotnet publish

deployment

test Used to execute unit tests dotnet test

vstest Executes unit tests from specified files dotnet vstest

[<TEST_FILE_NAMES>]

pack Packs the code into a NuGet package dotnet pack

migrate
Migrates .NET Core preview 2 to .NET Core
1.0

dotnet migrate

clean Cleans the output of the project dotnet clean

sln Modifies a .NET Core solution dotnet sln

help
Displays the list of commands available to
execute through .NET CLI

dotnet help

store
Stores the specified assemblies in the runtime
package store

dotnet store

Here are some of the project level commands that can be used to add a new NuGet
package, remove an existing one, list references, and others:

Command Description Example

add package Adds a package reference to the
project

dotnet add package

Newtonsoft.Json

remove

package

Removes a package reference from
the project

dotnet remove package

Newtonsoft.Json

add

reference

Adds a project reference to the
project

dotnet add reference

chapter1/proj1.csproj

remove

reference

Removes the project reference from
the project

dotnet remove reference

chapter1/proj1.csproj

list

reference

List down all the project references
in the project

dotnet list reference

The following are some common Entity Framework Core commands that can be used
to add migration, remove migration, update the database, and so on.

Command Description Example

dotnet ef

migrations add Adds a new migration

dotnet ef migrations add

Initial

- Initial is the name of
migration

dotnet ef

migrations list List available migrations dotnet ef migrations list

dotnet ef

migrations remove Remove specific migration

dotnet ef migrations remove

Initial

- Initial is the name of
migration

dotnet ef database

update

To update the database to a
specified migration

dotnet ef database update

Initial

- Initial is the name of
migration

dotnet ef database

drop Drops the database dotnet ef database drop

Here are some of the server level commands that can be used to delete the NuGet
package from its actual source repository from the machine, add NuGet package into
its actual source repository on the machine, and so on:

Command Description Example

nuget delete Deletes the package from the server dotnet nuget delete

Microsoft.AspNetCore.App 2.0

nuget push
Pushes a package to the server and
publishes it

dotnet nuget push foo.nupkg

nuget locals Lists the local NuGet resources dotnet nuget locals -l all

msbuild
Builds a project and all of its
dependencies

dotnet msbuild

dotnet

install

script

The script to install the .NET CLI tools
and the shared runtime

./dotnet-install.ps1 -Channel

LTS

To run the preceding commands, we can use the tool known as dotnet from the
command line and specify the actual command followed by that. When the .NET Core
CLI is installed, it is set into the PATH variable in Windows OS and can be accessed
from any folder. So, for example, if you are at your project root folder and wanted to
restore the dependencies, you can just call the following command and it will restore
all the dependencies that have been defined in your project file:

dotnet restore

The preceding command will start restoring the dependencies or project-specific tools,
as defined in the project file. The restoration of tools and dependencies are done in
parallel:

We can also set the path where packages can be restored by using the --packages
argument. However, if this is not specified, it uses the .nuget/packages folder under the
system's user folder. For example, the default NuGet folder for Windows OS is
{systemdrive}:\Users\{user}\.nuget\packages and /home/{user} for Linux OS, respectively.

Understanding .NET Standard
In the .NET ecosystem, there are many runtimes. We have the .NET Framework,
which is a full machine-wide framework installed on the Windows operating system
and provides app models for Windows Presentation Foundation (WPF), Windows
Forms, and ASP.NET. Then, we have .NET Core, which is targeted at cross-platform
operating systems and devices and provides ASP.NET Core, Universal Windows
Platform (UWP), and a Mono runtime that is targeted at Xamarin applications and
developers who can use Mono runtime to develop applications on Xamarin and run on
iOS, Android, and Windows OS.

The following diagram depicts how the .NET Standard Library provides an abstraction
of .NET Framework, .NET Core, and Xamarin with the common building blocks:

All of these runtimes implement an interface known as .NET Standard, where .NET
Standard is the specification of .NET APIs that have the implementation for each
runtime. This makes your code portable across different platforms. This means the
code created for one runtime can also be executed by another runtime. .NET Standard
is the next generation of Portable Class Libraries (PCL) we used earlier. Just to
recap, PCL is a class library that targets one or more frameworks of .NET. When
creating a PCL, we can select the target frameworks where this library needs to be
used, and it minimizes the assemblies and uses only those that are common to all
frameworks.

The .NET Standard is not an API or executable that can be downloaded or installed. It

is a specification that defines the API that each platform implements. Each runtime
version implements a specific .NET Standard version. The following table shows the
versions of .NET Standard each platform implements:

We can see that .NET Core 2.0 implements .NET Standard 2.0 and that .NET
Framework 4.5 implements .NET Standard 1.1., so for example, if we have a class
library developed on .NET Framework 4.5, this can easily be added into the .NET
Core project because it implements a greater version of .NET Standard. On the other
hand, if we wanted to reference the .NET Core assembly into .NET Framework 4.5,
we can do so by changing the .NET Standard version to 1.1 without recompiling and
building our project.

As we learned, the basic idea of .NET Standard is to share code between different
runtimes, but how it differs from PCL is shown as follows:

Portable Class Library (PCL) .NET Standard

Represents the Microsoft platform and targets a limited set of Agnostic to

platforms platform

APIs are defined by the platforms you target Curated set of
APIs

They are not linearly versioned Linearly
versioned

.NET Standard is also mapped to PCL, so if you have an existing PCL library that you
wanted to convert to .NET Standard, you can reference the following table:

PCL
Profile

.NET
Standard PCL Plaforms

7 1.1 .NET Framework 4.5, Windows 8

31 1.0 Windows 8.1, Windows Phone Silverlight 8.1

32 1.2 Windows 8.1, Windows Phone 8.1

44 1.2 .NET Framework 4.5.1, Windows 8.1

49 1.0 .NET Framework 4.5, Windows Phone Silverlight 8

78 1.0 .NET Framework 4.5, Windows 8, Windows Phone
Silverlight 8

84 1.0 Windows Phone 8.1, Windows Phone Silverlight 8.1

111 1.1 .NET Framework 4.5, Windows 8, Windows Phone 8.1

151 1.2 .NET Framework 4.5.1, Windows 8.1, Windows Phone
8.1

157 1.0 Windows 8.1, Windows Phone 8.1, Windows Phone
Silverlight 8.1

259 1.0 .NET Framework 4.5, Windows 8, Windows Phone 8.1,
Windows Phone Silverlight 8

Considering the preceding table, if we have a PCL that targets .NET Framework 4.5.1,
Windows 8.1, and Windows Phone 8.1 with the PCL profile set to 151, it can be
converted to the .NET Standard library with version 1.2.

Versioning of .NET Standard
Unlike PCL, each version of .NET Standard is linearly versioned and contains the
APIs for the previous versions and so on. Once the version is shipped, it is frozen and
cannot be changed, and the application can easily target that version.

The following diagram is a representation of how .NET Standard is versioned. The
higher the version is, the more APIs will be available, whereas the lower the version is,
the more platforms will be available:

New improvements in .NET
Standard 2.0
.NET Core 2.0 is targeted at .NET Standard 2.0 and provides two major benefits. This
includes the increase in the number of APIs provided from the previous version and its
compatibility mode, as we will discuss further in this chapter.

More APIs in .NET Standard
2.0
More APIs have been added into .NET Standard 2.0 and the number is almost double
that of the previous .NET Standard, 1.0. Additionally APIs like DataSet, collections,
binary serialization, XML schema, and others are now part of .NET Standard 2.0
specification. This has increased the portability of code from .NET Framework to
.NET Core.

The following diagram depicts the categorical view of APIs added in each area:

Compatibility mode
Although more than 33K APIs have been added into .NET Standard 2.0, many of the
NuGet packages still target .NET Framework, and moving them to .NET Standard is
not possible, since their dependencies are still not targeted at .NET Standard.
However, with .NET Standard 2.0, we can still add packages which show a warning
but don't block adding those packages into our .NET Standard library.

Under the hood, .NET Standard 2.0 uses compatibility shim, which solves the third
party library compatibility issue and makes it easy in referencing those libraries. In the
CLR world, the identity of the assembly is part of the type identity. This means that
when we say System.Object in .NET Framework, we are referencing
[mscorlib]System.Object and with .NET Standard, we are referencing
[netstandard]System.Object, so if we are referencing any assembly which is part of .NET
Framework, it cannot be easily run on .NET Standard and so compatibility issues arise.
To solve this problem, they have used type forwarding which provides a fake mscorlib
assembly that type forwards all the types to the .NET Standard implementation.

Here is a representation of how the .NET Framework libraries can run in any of the
.NET Standard implementations using the type forwarding approach:

On the other hand, if we have a .NET Framework library and we wanted to reference a
.NET Standard library, it will add the netstandard fake assembly and perform type
forwarding of all the types by using the .NET Framework implementation:

To suppress warnings, we can add NU1701 for particular NuGet packages whose dependencies are not
targeting .NET Standard.

Creating a .NET Standard
library
To create a .NET Standard library, you can either use Visual Studio or the .NET Core
CLI toolset. From Visual Studio, we can just click on the .NET Standard option as
shown in the following screenshot, and select Class Library (.NET Standard).

Once the .NET Standard library is created, we can reference it to any project and
change the version if needed, depending on which platform we want to reference. The
version can be changed from the properties panel, as shown in the following
screenshot:

What comes with ASP.NET
Core 2.0
ASP.NET Core is one of the most powerful platforms for developing cloud-ready and
enterprise web applications that run cross-platform. Microsoft has added many features
with ASP.NET Core 2.0, and that includes new project templates, Razor Pages,
simplified provisioning of Application Insights, connection pooling, and so on.

The following are some new improvements for ASP.NET Core 2.0.

ASP.NET Core Razor Pages
Razor syntax-based pages have been introduced in ASP.NET Core. Now, developers
can develop applications and write syntax on the HTML with no controller in place.
Instead, there is a code behind file where other events and logic can be handled. The
backend page class is inherited from the PageModel class and its member variables and
methods can be accessed using the Model object in Razor syntax. The following is a
simple example that contains the GetTitle method defined in the code-behind class and
used in the view page:

public class IndexModel : PageModel

{

 public string GetTitle() => "Home Page";

}

Here is the Index.cshtml file that displays the date by calling the GetCurrentDate method:

@page

@model IndexModel

@{

 ViewData["Title"] = Model.GetTitle();

}

Automatic Page and View
compilation on publishing
On publishing the ASP.NET Core Razor pages project, all the views are compiled into
one single assembly and the published folder size is comparatively small. In case we
want view and all the .cshtml files to be generated when the publishing process takes
place, we have to add an entry, which is shown as follows:

Razor support for C# 7.1
Now, we can use C# 7.1 features such as inferred tuple names, pattern matching with
generics, and expressions. In order to add this support, we have to add one XML tag as
follows in our project file:

<LangVersion>latest</LangVersion>

Simplified configuration for
Application Insights
With ASP.NET Core 2.0, you can enable Application Insights with a single click. A
user can enable Application Insights by just right clicking Project and hitting Add |
Application Insights Telemetry before going through a simple wizard. This allows you
to monitor the application and provides complete diagnostics information from Azure
Application Insights.

We can also view the complete telemetry from the Visual Studio 2017 IDE from the
Application Insights Search window and monitor trends from Application Insights
Trends. Both of these windows can be opened from the View | Other Windows menu.

Pooling connections in Entity
Framework Core 2.0
With the recent release of Entity Framework Core 2.0, we can pool connections by
using the AddDbContextPool method in the Startup class. As we already know, in ASP.NET
Core, we have to add the DbContext object using Dependency Injection (DI) in the
ConfigureServices method in the Startup class, and when it is used in the controller, a new
instance of the DbContext object is injected. To optimize performance, Microsoft has
provided this AddDbContextPool method, which first checks for the available database
context instance and injects it wherever it is needed. On the other hand, if the database
context instance is not available, a new instance is created and injected.

The following code shows how AddDbContext can be added in the ConfigureServices method
in the Startup class:

services.AddDbContextPool<SampleDbContext>(

 options => options.UseSqlServer(connectionString));

There are some more features added to Owned Types, Table splitting, Database Scalar Function mapping, and
string interpolation that you can refer to from the following link: https://docs.microsoft.com/en-us/ef/core/what-is-
new/.

https://docs.microsoft.com/en-us/ef/core/what-is-new/

New features in C# 7.0
C# is the most popular language in the .NET ecosystem and was first introduced with
the .NET Framework in 2002. The current stable version of C# is 7. The following
chart shows how C# 7.0 has progressed and what versions were introduced in different
years:

Here are some of the new features that were introduced with C# 7.0:

Tuples
Pattern matching
Reference returns
Exceptions as expressions
Local functions
Out variables Literals
Async Main

Tuples
Tuples solve the problem of returning more than one value from a method.
Traditionally, we can use out variables that are reference variables, and the value is
changed if they are modified from the calling method. However, without parameters,
there are some limitations, such as that it cannot be used with async methods and is not
recommended to be used with external services.

Tuples have the following characteristics:

They are value types.
They can be converted to other Tuples.
Tuple elements are public and mutable.

A Tuple is represented as System.Tuple<T>, where T could be any type. The following
example shows how a Tuple can be used with the method and how the values can be
invoked:

static void Main(string[] args)

{

 var person = GetPerson();

 Console.WriteLine($"ID : {person.Item1},

 Name : {person.Item2}, DOB : {person.Item3}");

}

static (int, string, DateTime) GetPerson()

{

 return (1, "Mark Thompson", new DateTime(1970, 8, 11));

}

As you may have noticed, items are dynamically named and the first item is named
Item1, the second Item2, and so on. On the other hand, we can also name the items so
that the calling party should know about the value, and this can be done by adding the
parameter name for each parameter in the Tuple, which is shown as follows:

static void Main(string[] args)

{

 var person = GetPerson();

 Console.WriteLine($"ID : {person.id}, Name : {person.name},

 DOB : {person.dob}");

}

static (int id, string name, DateTime dob) GetPerson()

{

 return (1, "Mark Thompson", new DateTime(1970, 8, 11));

}

To learn more about Tuples, please check the following link:
https://docs.microsoft.com/en-us/dotnet/csharp/tuples.

https://docs.microsoft.com/en-us/dotnet/csharp/tuples

Patterns
Patterns matching is the process of performing syntactical testing of the value to verify
whether it matches the certain model. There are three types of patterns:

Constant patterns.
Type patterns.
Var patterns.

Constant pattern
A constant pattern is a simple pattern that checks for the constant value. Consider the
following example: if the Person object is null, it will return and exit the body method.

The Person class is as follows:

class Person

{

 public int ID { set; get; }

 public string Name { get; set; }

 public DateTime DOB { get; set; }

}

In the preceding code snippet, we have a Person class that contains three properties,
namely ID, Name, and DOB (Date of Birth).

The following statement checks for the person object with a null constant value and
returns it if the object is null:

if (person is null) return;

Type pattern
The type pattern can be used with an object to verify whether it matches the type or
suffices the expression based on the conditions specified. Suppose we need to check
whether the PersonID is int; assign that ID to another variable, i, and use it in the
program, otherwise return:

if (!(person.ID is int i)) return;

Console.WriteLine($"Person ID is {i}");

We can also use multiple logical operators to evaluate more conditions, as follows:

if (!(person.ID is int i) && !(person.DOB>DateTime.Now.AddYears(-20))) return;

The preceding statement checks whether the Person.ID is null or not and whether the
person is older than 20.

Var pattern
The var pattern checks if the var is equal to some type. The following example shows
how the var pattern can be used to check for the type and print the Type name:

if (person is var Person) Console.WriteLine($"It is a person object and type is {person.GetType()}");

To learn more about patterns, you can refer to the following link: https://docs.microsoft.com/en-us/dotnet/csharp/whats
-new/csharp-7#pattern-matching.

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7#pattern-matching

Reference returns
Reference returns allows a method to return an object as a reference instead of its
value. We can define the reference return value by adding a ref keyword before the
type in the method signature and when returning the object from the method itself.

Here is the signature of the method that allows reference returns:

public ref Person GetPersonInformation(int ID);

Following is the implementation of the GetPersonInformation method that uses the ref keyword while returning the person's object.

Person _person;

public ref Person GetPersonInformation(int ID)

{

 _person = CallPersonHttpService();

 return ref _person;

}

Expression bodied member
extended
Expression bodied members were introduced in C# 6.0 where the syntactical
expression of the method can be written in a simpler way. In C# 7.0, we can use this
feature with a constructor, a destructor, an exception, and so on.

The following example shows how the constructor and destructor syntactic
expressions can be simplified using expression bodied members:

public class PersonManager

{

 //Member Variable

 Person _person;

 //Constructor

 PersonManager(Person person) => _person = person;

 //Destructor

 ~PersonManager() => _person = null;

}

With properties, we can also simplify the syntactic expression, and the following is a
basic example of how this can be written:

private String _name;

public String Name

{

 get => _name;

 set => _name = value;

}

We can also use an expression bodied syntactic expression with exceptions and
simplify the expression, which is shown as follows:

private String _name;

public String Name

{

 get => _name;

 set => _name = value ?? throw new ArgumentNullException();

}

In the preceding example, if the value is null, a new ArgumentNullException will be thrown.

Creating Local Functions
Functions that are created within a function are known as Local Functions. These are
mainly used when defining helper functions that have to be in the scope of the function
itself. The following example shows how the factorial of the number can be obtained
by writing a Local Function and calling it recursively:

static void Main(string[] args)

{

 Console.WriteLine(ExecuteFactorial(4));

}

static long ExecuteFactorial(int n)

{

 if (n < 0) throw new ArgumentException("Must be non negative",

 nameof(n));

 else return CheckFactorial(n);

 long CheckFactorial(int x)

 {

 if (x == 0) return 1;

 return x * CheckFactorial(x - 1);

 }

}

Out variables
With C# 7.0, we can write cleaner code when using out variables. As we know, to use
out variables, we have to first declare them. With the new language enhancement, we
can now just write out as a prefix and specify the name of the variable that we need that
value to be assigned to.

To clarify this concept, we will first see the traditional approach, which is shown as
follows:

public void GetPerson()

{

 int year;

 int month;

 int day;

 GetPersonDOB(out year, out month, out day);

}

public void GetPersonDOB(out int year, out int month, out int day)

{

 year = 1980;

 month = 11;

 day = 3;

}

And here with C# 7.0, we can simplify the preceding GetPerson method, which is shown
as follows:

public void GetPerson()

{

 GetPersonDOB(out int year, out int month, out int day);

}

Async Main
As we already know, in .NET Framework, the Main method is the main entry point from
where the application/program is executed by the OS. For example, in ASP.NET Core,
Program.cs is the main class where the Main method is defined, which creates a WebHost
object, runs the Kestrel server, and loads up the HTTP pipeline as configured in the
Startup class.

In the previous version of C#, the Main method had the following signatures:

public static void Main();

public static void Main(string[] args);

public static int Main();

public static int Main(string[] args);

In C# 7.0, we can use Async Main to perform asynchronous operations. The
Async/Await feature was initially released in .NET Framework 4.5 in order to execute
methods asynchronously. Today, many APIs provides Async/Await methods to
perform asynchronous operations.

Here are some additional signatures of the Main method that have been added with C#
7.1:

public static Task Main();

public static Task Main(string[] args);

public static Task<int> Main();

public static Task<int> Main(string[] args);

Because of the preceding async signatures, we can now call async methods from the
Main entry point itself and use await to perform an asynchronous operation. Here is a
simple example of ASP.NET Core that calls the RunAsync method instead of Run:

public class Program

{

 public static async Task Main(string[] args)

 {

 await BuildWebHost(args).RunAsync();

 }

 public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseStartup<Startup>()

 .Build();

}

Async Main is a feature of C# 7.1, and to enable this feature in Visual Studio 2017,
you can go to the project properties, click on the Advance button and set the Language
version as C# latest minor version (latest), which is shown as follows:

Writing quality code
For every performance-efficient application, code quality plays an important role. As
we already know, Visual Studio is the most popular Integrated Development
Environment (IDE) for developing .NET applications, and since Roslyn (.NET
Compiler SDK) exposes compiler platforms as APIs, many features have been
introduced that do not only extend the capabilities of Visual Studio, but enhance the
development experience.

Live Static Code analysis is one of the core features that can be used in Visual Studio
in developing .NET applications which provides code analysis during development
while writing code. As this feature uses the Roslyn APIs, many other third-party
companies have also introduced sets of analyzers that can be used. We can also
develop our own analyzer for a particular requirement, and it's not a very complicated
procedure. Let's look at a quick introduction on how we can use Live Static Code
analysis in our .NET Core project and how it benefits the development experience by
analyzing code and giving warnings, errors, and potential fixes for them.

We can add analyzer as a NuGet package. In NuGet.org, there are many analyzers
available, and once we add any analyzer into our project, it adds a new Analyzer node
into the Dependencies section of the project. We can then customize rules, suppress
warnings or errors, and so on.

Let's add a new analyzer from Visual Studio in our .NET Core project. If you don't
know which analyzer you want to add, you can just type analyzers in the NuGet
Package manager window and it will list all the analyzers for you. We will just add the
Microsoft.CodeQuality.Analyzers analyzer, which contains some decent rules:

Once the selected Analyzer is added, a new Analyzers node is added into our project:

In the preceding picture, we can see that three nodes have been added to the Analyzers
node, and to see/manage the rules, we can expand the subnodes
Microsoft.CodeQuality.Analyzers and Microsoft.CodeQuality.CSharp.Analyzers, which is shown as
follows:

Moreover, we can also change the rule severity by right-clicking on the rule and
selecting the severity, which is shown as follows:

In the preceding picture, rule CA1008 states that Enums should have a value of zero.
Let's test this out and see how it works.

Create a simple Enum and specify the values, which are shown as follows:

public enum Status

{

 Create =1,

 Update =2,

 Delete =3,

}

You will notice as soon as you write this code, it will show the following error and it

will provide potential fixes:

Finally, here is the fix we can apply, and the error will disappear:

You can also use one of the popular Visual Studio extensions known as Roslynator,
which can be downloaded from the following link. It contains more than 190 analyzers
and refactorings for C# based projects: https://marketplace.visualstudio.com/items?itemName=josefp
ihrt.Roslynator.

Live Static Code analysis is a great feature that helps developers to write quality code
that conforms to the best guidelines and practices.

https://marketplace.visualstudio.com/items?itemName=josefpihrt.Roslynator

Summary
In this chapter, we learned about the .NET Core Framework and some new
improvements that are introduced with .NET Core 2.0. We also looked into the new
features of C# 7 and how we can write cleaner code and simplify syntactic
expressions. Finally, we covered the topic of writing quality code and how we can
leverage with the Code analysis feature provided in Visual Studio 2017 to add
analyzers into our project which serve our needs. The next chapter will be an in-depth
chapter about .NET Core that will cover topics around .NET Core internals and
performance improvements.

Understanding .NET Core
Internals and Measuring
Performance
When developing application architecture, knowing the internals of how the .NET
framework works plays a vital role in ensuring the quality of the application's
performance. In this chapter, we will focus on the internals of .NET Core that can help
us write quality code and architecture for any application. This chapter will cover
some of the core concepts of .NET Core internals, including the compilation process,
garbage collection, and Framework Class Library (FCL). We will complete this
chapter by going through the BenchmarkDotNet tool, which is mostly used in
measuring code performance, and is highly recommended for benchmarking code
snippets within an application.

In this chapter, you will learn the following topics:

.NET Core internals
Utilizing multiple cores of the CPU for high performance
How releasing builds increases performance
Benchmarking .NET Core 2.0 applications

.NET Core internals

.NET Core contains two core components—the runtime CoreCLR and the base-class
libraries CoreFX. In this section, we will cover the following topics:

CoreFX
CoreCLR
Understanding MSIL, CLI, CTS, and CLS
How CLR works
From compilation to execution—under the hood
Garbage collection
.NET Native and JIT compilation

CoreFX
CoreFX is the code name of .NET Core's set of libraries. It contains all the libraries
that start with Microsoft.* or System.*and contains collections, I/O, string
manipulation, reflection, security, and many more features.

The CoreFX is runtime agnostic, and it can run on any platform regardless of what
APIs it supports.

To learn more about each assembly, you can refer to the .NET Core source browser at https://source.dot.net.

https://source.dot.net

CoreCLR
CoreCLR provides the common language runtime environment for .NET Core
applications, and manages the execution of the complete application life cycle. It
performs various operations when the program is running. Operations such as memory
allocation, garbage collection, exception handling, type safety, thread management,
and security are part of CoreCLR.

.NET Core's runtime provides the same Garbage Collection (GC) as .NET
Framework and a new Just In Time (JIT) compiler that is more optimized,
codenamed RyuJIT. When .NET Core was first released, it was only supported for 64-
bit platforms, but with the release of .NET Core 2.0, it is now available for 32-bit
platforms as well. However, the 32-bit version is only supported by Windows
operating systems.

Understanding MSIL, CLI,
CTS, and CLS
When we build our project, the code is compiled into the Intermediate
Language (IL), also known as Microsoft Intermediate Language (MSIL). MSIL is
compliant with the Common Language Infrastructure (CLI), where CLI is the
standard that provides a common type system and a language specification,
respectively known as the Common Type System (CTS) and Common Language
Specification (CLS).

The CTS provides a common type system and compiles the language-specific types
into the compliant data types. It standardizes all the .NET languages' data types to a
common data type for language interoperability. For example, if the code is written in
C#, it will be converted to the specific CTS.

Suppose we have two variables, defined in the following code fragment using C#:

class Program

{

 static void Main(string[] args)

 {

 int minNo = 1;

 long maxThroughput = 99999;

 }

}

On compilation, the compiler generates the MSIL into an assembly that will be
available through the CoreCLR to perform the JIT and convert it into the native
machine code. Note that the int and long types are converted to the int32 and int64
respectively:

It is not necessary for every language to comply completely with the CTS, and it can

support the smaller footprint of the CTS, too. For example, when VB.NET was first
released in .NET Framework, it only supported the signed integer data types, and there
was no provision to use unsigned integers. With later versions of .NET Framework,
and now with .NET Core 2.0, we can use all managed languages, such as C#, F#, and
VB.NET, to develop applications and easily reference any project's assembly.

How the CLR works
The CLR is implemented as a set of in-process libraries that are loaded with the
application, and runs inside the context of the application process. In the following
diagram, we have two .NET Core applications running, named App1.exe and
App2.exe. Each black box represents the application process address space, where the
applications App1.exe and App2.exe are running their own CLR version side by side:

When packaging the .NET Core applications, we can either publish them as
framework-dependent deployments (FDDs) or self-contained deployments
(SCDs). In FDDs, the published package does not contain the .NET Core runtime, and
expects that the .NET Core is present on the target/hosting system. With SCDs, all the
components, such as the .NET Core runtime and .NET Core libraries, are included in
the published package, and the .NET Core installation on the target system is not
required.

To learn more about FDDs or SCDs, please refer to https://docs.microsoft.com/en-us/dotnet/core/deploying/.

https://docs.microsoft.com/en-us/dotnet/core/deploying/

From compilation to execution –
Under the hood
The .NET Core compilation process is like the one used with the .NET Framework.
When the project is built, the internal .NET CLI command is invoked by the MSBuild
system, which builds the project and generates the assembly (.dll) or executable (.exe)
file. This assembly contains the manifest that contains the assembly's metadata, and
includes the version number, culture, type-reference information, information about
the referenced assemblies, and a list of other files in the assembly and their
association. This assembly manifest is stored either in the MSIL code or in a
standalone portable executable (PE) file:

Now, when the executable is run, a new process is started and bootstraps the .NET
Core runtime, which then initializes the execution environment, sets up the heap and
thread pool, and loads the assembly into the process address space. Based on the
program, it then executes the main entry point method (Main) and performs a JIT
compilation. From here, the code starts executing and the objects start allocating
memory on heap, where primitive types store on stack. For each method, the JIT
compilation is done and the native machine code gets generated.

When JIT compilation is done, and before generating a native machine code, however,
it also performs a few validations. These validations include the following:

Verifying, that the MSIL was generated during the build process
Verifying, whether any code was modified or new types added during the JIT
compilation process
Verifying, that the optimized code for the target machine has been generated

Garbage collection
One of the most important features of CLR is the garbage collector. Since the .NET
Core applications are managed applications, most of the garbage collection is done
automatically by the CLR. The allocation of objects in the memory is efficiently done
by the CLR. The CLR not only tunes the virtual memory resources from time to time,
but it also reduces the fragmentation of underlying virtual memory to make it more
efficient in terms of space.

When the program is run, the objects start allocating memory on the heap and each
object's address is stored on the stack. This process continues until the memory reaches
its maximum limit. Then the GC comes into play and starts reclaiming memory by
removing the unused managed objects and allocating new objects. This is all done
automatically by the GC, but there is also a way to invoke the GC to perform garbage
collection by calling the GC.Collect method

Let's take an example where we have a Car object called c in the Main method. When the
function is executed, the Car object will be allocated by the CLR into the heap memory
and the reference to that c object will be stored in the stack address pointing to the Car
object on the heap. When the garbage collector runs, it reclaims the memory from the
heap and removes the reference from the stack:

Some important points to note are that the garbage collection is done automatically by
the GC on managed objects, and that if there are any unmanaged objects, such as
database connections, I/O operations, and so on, they need to be garbage collected

explicitly. Otherwise, GC works efficiently on managed objects and ensures that the
application will not experience any decrease in performance when the GC is
performed.

Generations in GC
There are three kinds of generation in garbage collection known as Generation 0,
Generation 1, and Generation 2. In this section, we will look at the concept of
generations and how it affects the performance of the garbage collector.

Let's suppose we run an application that creates three objects named Object1, Object2,
and Object3. These objects will allocate the memory in Generation 0:

Now, when the garbage collector runs (this is an automatic process, unless you
explicitly call the garbage collector from the code), it checks for the objects that are
not needed by the application and have no reference in the program. It will simply
remove those objects. For example, if the scope of Object1 is not referenced anywhere,
the memory for this object will be reclaimed. However, the other two objects, Object1
and Object2, are still referenced in the program, and will be moved to Generation 1.

Now, let's suppose two more objects, called Object4 and Object5, are created. We will
store them in the Generation 0 slot, as shown in the following diagram:

When garbage collection runs the second time, it will find two objects called Object4
and Object5 in Generation 0 and two objects called Object2 and Object3 in Generation
1. Garbage collector will first check the reference of those objects in Generation 0 and,
if they are not used by the application, they will be removed. The same goes for the
Generation 1 objects. For example, if Object3 is still referenced, it will be moved to
Generation 2 and Object2 will be removed from Generation 1, as shown in the
following diagram:

This concept of generations actually optimizes the performance of GC, and the objects
stored in Generation 2 are more likely to be stored for a longer period. GC performs
fewer visits and gains time instead of checking each object again and again. The same
goes for Generation 1, which is also less likely to reclaim the space than Generation 0.

.NET Native and JIT
compilation
JIT compilation is done mostly at runtime, and it converts the MSIL code to the native
machine code. This is when the code is run the first time, and it takes a little bit more
time than its successive runs. In .NET Core today, we are developing applications for
mobile and handheld devices that have limited resources in terms of CPU power and
memory. Currently, the Universal Windows Platform (UWP) and the Xamarin
platform run on .NET Core. With these platforms, .NET Core automatically generates
that native assembly at compilation time or while generating the platform-specific
packages. Though it does not require the JIT compilation process to be done at
runtime, this eventually increases the performance of the application's boot-up time.
This native compilation is done through a component known as .NET Native.

.NET Native begins the compilation process after the language-specific compiler
finishes up the compilation process that is done at build time. The .NET Native
toolchain reads the MSIL generated from the language compiler and performs the
following operations:

It eliminates the metadata from the MSIL.
It replaces the code that relies on reflection and metadata with the static native
code when comparing field values.
It checks the code that is invoked by the application and includes only that in the
final assembly.
It replaces the full CLR with a refactored runtime that contains the garbage
collector and no JIT compiler. The refactored runtime goes with the app and is
contained in the assembly named mrt100_app.dll.

Utilizing multiple cores of the
CPU for high performance
These days, the nature of applications focuses more on connectivity, and there are
cases where their operations take more time to execute. We also know that nowadays,
all computers come with a multi-core processor, and using these cores effectively
increases the performance of the application. Operations such as network/IO have
latency issues, and the synchronous execution of the application program may often
lead to a long waiting time. If the long-running tasks are executed in a separate thread
or in an asynchronous manner, the resulting operation will take less time and increase
responsiveness. Another benefit is performance that actually utilizes multiple cores of
the processor and executes the task simultaneously. In the .NET world, we can achieve
responsiveness and performance by splitting the tasks into multiple threads and using
classic multithreading programming APIs, or a more simplified and advanced model
known as the task programming library (TPL). The TPL is now supported in .NET
Core 2.0, and we will soon explore how it can be used to execute tasks on multiple
cores.

The TPL programming model is based on the task. A task is a unit of work—an
object's representation of an ongoing operation.

A simple task can be created by writing the following lines of code:

static void Main(string[] args)

{

 Task t = new Task(execute);

 t.Start();

 t.Wait();

}

private static void Execute() {

 for (int i = 0; i < 100; i++)

 {

 Console.WriteLine(i);

 }

}

In the preceding code, the task can be initialized using a Task object, where Execute is the
computational method that is executed when the Start method is called. The Start
method tells the .NET Core that the task can start and returns immediately. It forks the
program execution into two threads that run concurrently. The first thread is the actual
application thread and the second one is the one that executes the execute method. We
have used the t.Wait method to wait for the worker task to show the result on the

console. Otherwise, once the program exits the block of code under the Main method,
the application ends.

The goal of parallel programming is to effectively use multiple cores. For example, we
are running the preceding code in a single-core processor. These two threads will run
and share the same processor. However, if the same program can run on a multi-core
processor, it can run on multiple cores by utilizing each core separately, increasing the
performance and achieving true parallelism:

Unlike TPL, the classic Thread object doesn't guarantee that your thread will be running
on distinct cores of the CPU. With TPL, however, it guarantees that each thread will
run on the distinct thread unless it reaches the number of tasks as per the CPU and
shares the cores.

To learn more about what TPL provides, please refer to
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl.

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl

How releasing builds increases
performance
Release and debug builds are two build modes provided in .NET applications. Debug
mode is mostly used when we are in the process of writing code or troubleshooting
errors, whereas release build mode is often used while packaging the application to
deploy on production servers. When developing the deployment package, developers
often miss updating the build mode to the release build, and then they face
performance issues when the application is deployed:

The following table shows some differences between the debug and release modes:

Debug Release

No optimization of code is done by
the compiler

Code is optimized and minified in size
when built using release mode

Stack trace is captured and thrown
at the time of exception No stack trace is captured

The debug symbols are stored All code and debug symbols under #debug
directives are removed

More memory is used by the source
code at runtime

Less memory is used by the source code at
runtime

Benchmarking .NET Core 2.0
applications
Benchmarking applications is the process of evaluating and comparing artifacts with
the agreed upon standards. To benchmark .NET Core 2.0 application code, we can use
the BenchmarkDotNet tool, which provides a very simple API to evaluate the performance
of code in your application. Usually, benchmarking at the micro-level, such as with
classes and methods, is not an easy task, and requires quite an effort to measure the
performance, whereas BenchmarkDotNet does all the low-level plumbing and the complex
work associated with benchmark solutions.

Exploring BenchmarkDotNet
In this section, we will explore BenchmarkDotNet and learn how effectively it can be used
to measure application performance.

It can simply be installed using a NuGet package manager console window or through
the Project References section of your project. To install BenchmarkDotNet, execute the
following command:

Install-Package BenchmarkDotNet

The preceding command adds a BenchmarkDotNet package from NuGet.org.

To test the BenchmarkDotNet tool, we will create a simple class that contains two methods
to generate a Fibonacci series for a sequence of 10 numbers. The Fibonacci series can
be implemented in multiple ways, which is why we are using it to measure which code
snippet is faster and more performance efficient.

Here is the first method that generates the Fibonacci sequence iteratively:

public class TestBenchmark

{

 int len= 10;

 [Benchmark]

 public void Fibonacci()

 {

 int a = 0, b = 1, c = 0;

 Console.Write("{0} {1}", a, b);

 for (int i = 2; i < len; i++)

 {

 c = a + b;

 Console.Write(" {0}", c);

 a = b;

 b = c;

 }

 }

}

Here is another method that uses the recursive approach to generate the Fibonacci
series:

[Benchmark]

public void FibonacciRecursive()

{

 int len= 10;

 Fibonacci_Recursive(0, 1, 1, len);

}

private void Fibonacci_Recursive(int a, int b, int counter, int len)

{

 if (counter <= len)

 {

 Console.Write("{0} ", a);

 Fibonacci_Recursive(b, a + b, counter + 1, len);

 }

}

Note that both of the main methods of the Fibonacci series contain a Benchmark attribute.
This actually tells the BenchmarkRunner to measure methods that contain this attribute.
Finally, we can call the BenchmarkRunner from the main entry point of the application that
measures the performance and generates a report, as shown in the following code:

static void Main(string[] args)

{

 BenchmarkRunner.Run<TestBenchmark>();

 Console.Read();

}

Once the benchmark is run, we will get the report as follows:

As well as this, it also generates files in the root folder of an application that runs the
BenchmarkRunner. Here is the .html file that contains the information about the version of
BenchmarkDotNet and the OS, the processor, frequency, resolution, and timer details, the
.NET version (in our case, .NET Core SDK 2.0.0), host, and so on:

The table contains four columns. However, we can add more columns, which are
optional by default. We can also add custom columns as well. The Method is the name
of the method that contains the benchmark attribute, the Mean is the average time it
takes for all the measurements to be taken (where us is microseconds), Error is the
time taken to process errors, and StdDev is the standard deviation of the
measurements.

After comparing both the methods, the FibonacciRecursive method is more efficient as the
Mean, Error, and StdDev values are smaller than the Fibonacci method.

Other than the HTML, two more files are created, a Comma Separated Value (CSV)
file and a Markdown Documentation (MD) file which contains the same
information.

How it works
Benchmark generates a project at runtime for each benchmark method and builds it in
release mode. It tries multiple combinations to measure the method's performance by
launching that method multiple times. Once the multiple cycles are run, the report is
generated, containing files and information about Benchmark.

Setting parameters
In the previous example, we tested the method with only one value. Practically, when
testing an enterprise application, we want to test it with different values to estimate the
method's performance.

First of all, we can define a property for each parameter, set the Params attribute, and
specify the value(s) for which we need that method to be tested. Then we can use that
property in the code. BenchmarkRun automatically tests that method with all of the
parameters and generates the report. Here is the complete code snippet of
the TestBenchmark class:

public class TestBenchmark

{

 [Params(10,20,30)]

 public int Len { get; set; }

 [Benchmark]

 public void Fibonacci()

 {

 int a = 0, b = 1, c = 0;

 Console.Write("{0} {1}", a, b);

 for (int i = 2; i < Len; i++)

 {

 c = a + b;

 Console.Write(" {0}", c);

 a = b;

 b = c;

 }

 }

 [Benchmark]

 public void FibonacciRecursive()

 {

 Fibonacci_Recursive(0, 1, 1, Len);

 }

 private void Fibonacci_Recursive(int a, int b, int counter, int len)

 {

 if (counter <= len)

 {

 Console.Write("{0} ", a);

 Fibonacci_Recursive(b, a + b, counter + 1, len);

 }

 }

}

After running Benchmark, the following report is generated:

Memory diagnostics using
BenchmarkDotnet
With BenchmarkDotnet, we can also diagnose any problems with the memory and measure
the number of allocated bytes and garbage collection.

It can be implemented using a MemoryDiagnoser attribute at the class level. To start, let's
just add the MemoryDiagnoser attribute to the TestBenchmark class that we created in the last
example:

[MemoryDiagnoser]

public class TestBenchmark {}

Rerun the application. Now it will collect other memory allocation and garbage
collection information and generate logs accordingly:

In the preceding table, the Gen 0 and Gen 1 columns each contain the number of that
particular generation per 1,000 operations. If the value is 1, then it means that the
garbage collection was done after 1,000 operations. However, note that in the first row,
the value is 0.1984, which means that the garbage collection was done after 198.4
seconds, whereas for Gen 1 of that row, no garbage collection took place. Allocated
represents the size of the memory that is allocated while invoking that method. It does
not include the Stackalloc/heap native allocations.

Adding configurations
Benchmark configuration can be defined by creating a custom class and inheriting it
from the ManualConfig class. Here is an example of the TestBenchmark class that we created
earlier containing some benchmark methods:

[Config(typeof(Config))]

public class TestBenchmark

{

 private class Config : ManualConfig

 {

 // We will benchmark ONLY method with names with names (which

 // contains "A" OR "1") AND (have length < 3)

 public Config()

 {

 Add(new DisjunctionFilter(

 new NameFilter(name => name.Contains("Recursive"))

));

 }

 }

 [Params(10,20,30)]

 public int Len { get; set; }

 [Benchmark]

 public void Fibonacci()

 {

 int a = 0, b = 1, c = 0;

 Console.Write("{0} {1}", a, b);

 for (int i = 2; i < Len; i++)

 {

 c = a + b;

 Console.Write(" {0}", c);

 a = b;

 b = c;

 }

 }

 [Benchmark]

 public void FibonacciRecursive()

 {

 Fibonacci_Recursive(0, 1, 1, Len);

 }

 private void Fibonacci_Recursive(int a, int b, int counter, int len)

 {

 if (counter <= len)

 {

 Console.Write("{0} ", a);

 Fibonacci_Recursive(b, a + b, counter + 1, len);

 }

 }

}

In the preceding code, we defined the Config class that inherits the ManualConfig class
provided in the benchmark framework. Rules can be defined inside the Config

constructor. In the preceding example, there is a rule that stipulates that only those
benchmark methods that contain Recursive should be executed. In our case, we have
only one method, FibonacciRecursive, that will be executed and whose performance we
will measure.

Another way of doing this is through the fluent API, where we can skip creating a
Config class and implement the following:

static void Main(string[] args)

{

 var config = ManualConfig.Create(DefaultConfig.Instance);

 config.Add(new DisjunctionFilter(new NameFilter(

 name => name.Contains("Recursive"))));

 BenchmarkRunner.Run<TestBenchmark>(config);

}

To learn more about BenchmarkDotNet, refer to http://benchmarkdotnet.org/Configs.htm.

http://benchmarkdotnet.org/Configs.htm

Summary
In this chapter, we have learned about the core concepts of .NET Core, including the
compilation process, garbage collection, how to develop high-performant .NET Core
applications by utilizing multiple cores of the CPU, and publishing an application
using a release build. We have also explored the benchmarking tool, which is highly
used for code optimization, and provides results specific to class objects.

In the next chapter, we will learn about multithreading and concurrent programming in
.NET Core.

Multithreading and
Asynchronous Programming in
.NET Core
Multithreading and asynchronous programming are two essential techniques that
facilitate the development of highly scalable and performant applications. If the
application is not responsive, it affects the user experience and increases the level of
dissatisfaction. On the other hand, it also increases the resource usage on the server
side, or where the application is running, and also increases the memory size and/or
CPU usage. Nowadays, hardware is very cheap, and every machine comes with
multiple CPU cores. Implementing multithreading and using asynchronous
programming techniques not only increases the performance of the application, but
also makes the application more responsive in nature.

This chapter examines the core concepts of multithreading and the asynchronous
programming model to help you use them in your projects and increase the overall
performance of your applications.

The following is a list of the topics that we will learn about in this chapter:

Multithreading versus asynchronous programming
Multithreading in .NET Core
Threads in .NET Core
Thread synchronization
Task parallel library (TPL)
Creating a task using TPL
Task-based asynchronous pattern
Design patterns for parallel programming

I/O bound operations are code that is dependent on external resources. Examples include accessing
a filesystem, accessing a network, and so on.

Multithreading versus
asynchronous programming
Multithreading and asynchronous programming, if properly implemented, improve the
performance of an application. Multithreading refers to the practice of executing
multiple threads at the same time to execute multiple operations or tasks in parallel.
There could be one main thread and several background threads, usually known as
worker threads, running in parallel at the same time, executing multiple tasks
concurrently, whereas both synchronous and asynchronous operations can run on a
single-threaded or a multithreaded environment.

In a single-threaded synchronous operation, there is only one thread that performs all
the tasks in a defined sequence, and it executes them one after the other. In a single-
threaded asynchronous operation, there is only one thread that executes the tasks, but it
allocates a time slice in which to run each task. When the time slice is over, it saves
the state of that task and starts executing the next one. Internally, the processor
performs the context switching between each task and allocates a time slice in which
to run them.

In a multithreaded synchronous operation, there are multiple threads that run the tasks
in parallel. There is no context switching between the tasks, like we have in an
asynchronous operation. One thread is responsible for executing the tasks assigned to
it and then starting another task, whereas in a multithreaded asynchronous operation,
multiple threads run multiple tasks and the task can be served and executed by single
or multiple threads.

The following diagram depicts the differences between the single and multithreaded
synchronous and asynchronous operations:

The preceding diagram shows four types of operations. In the single-threaded
synchronous operation, we have one thread running five tasks sequentially. Once Task
1 is completed, Task 2 is executed, and so on. In the single-threaded asynchronous
operation, we have a single thread, but each task will get a time slice to execute before
the next task is executed and so on. Each task will be executed multiple times and
resume from where it was paused. In the multi-threaded synchronous operation, we
have three threads running three tasks Task 1, Task 2, and Task 3 in parallel. Lastly,
in the multithreaded asynchronous operation, we have three tasks—Task 1, Task 2,
and Task 3—running by three threads, but each thread performs some context
switching based on the time slice allocated to each task.

In asynchronous programming, it is not always the case that each asynchronous operation will be running on
a new thread. Async/Await is a good example of a situation where there is no additional thread created. The async
operation is executed in the current synchronization context of the main thread and queues the asynchronous
operation executed in the allocated time slice.

Multithreading in .NET Core
There are many benefits in using multithreading in CPU and/or I/O-bound
applications. It is often used for long-running processes that have a longer or infinite
lifetime, working as background tasks, keeping the main thread available in order to
manage or handle user requests. However, unnecessary use may completely degrade
the application's performance. There are cases where creating too many threads is not a
good architecture practice.

Here are some examples where multithreading is a good fit:

I/O operations
Running long-running background tasks
Database operations
Communicating over a network

Multithreading caveats
Although there are many benefits to multithreading, there are some caveats that need
to be thoroughly addressed when writing multithreaded applications. If the machine is
a single or two-core machine and the application is creating lots of threads, the context
switching between these threads will slow the performance:

The preceding diagram depicts the program running on a single-processor machine.
The first task executes synchronously, and runs comparatively faster than the three
threads running on the single processor. The system executes the first thread, then
waits for a while before moving on to execute the second thread, and so on. This adds
an unnecessary overhead of switching between threads and, thus, delays the overall
operation. In the field of threading, this is known as context switching. The boxes
between each thread represent the delay occurring during each context switch between
threads.

As far as the developer experience is concerned, debugging and testing are two other
issues that are challenging for developers when creating a multithreaded application.

Threads in .NET Core
Every application in .NET starts with a single thread, which is the main thread. A
thread is the basic unit that the operating system uses to allocate processor time. Each
thread has a priority, exception handlers, and a data structure saved in its own thread
context. If the exception is thrown, it is thrown inside the context of the thread and
other threads are not affected by it. The thread context contains some low-level
information about, for example, the CPU registers, the address space of the thread's
host process, and so on.

If an application is running multiple threads on a single processor, each thread will be
assigned a period of processor time and will be executed one after the other. The time
slice is usually small, which makes it seem as if the threads are being executed at the
same time. Once the allocated time is over, the processor moves to the other thread and
the previous thread wait for the processor to become available again and execute it
based on the time slice allocated. On the other hand, if the threads are running on
multiple CPUs, then they may execute at the same time, but if there are other processes
and threads running, the time slice will be allocated and executed accordingly.

Creating threads in .NET Core
In .NET Core, the threading API is the same as that used in the full .NET Framework
version. A new thread can be created by creating a Thread class object and passing
the ThreadStart or ParameterizedThreadStart delegate as a parameter. ThreadStart and
ParameterizedThreadStart wrap a method that is invoked when the new thread is started.
ParameterizedThreadStart is used for method containing parameters.

Here is a basic example that runs the ExecuteLongRunningOperation method on a separate
thread:

static void Main(string[] args)

{

 new Thread(new ThreadStart(ExecuteLongRunningOperation)).Start();

}

static void ExecuteLongRunningOperation()

{

 Thread.Sleep(100000);

 Console.WriteLine("Operation completed successfully");

}

We can also pass parameters while starting the thread and use the
ParameterizedThreadStart delegate:

static void Main(string[] args)

{

 new Thread(new ParameterizedThreadStart

 (ExecuteLongRunningOperation)).Start(100000);

}

static void ExecuteLongRunningOperation(object milliseconds)

{

 Thread.Sleep((int)milliseconds);

 Console.WriteLine("Operation completed successfully");

}

The ParameterizedThreadStart delegate takes an object as a parameter. So, if you want to
pass multiple parameters, this can be done by creating a custom class and adding the
following properties:

public interface IService

{

 string Name { get; set; }

 void Execute();

}

public class EmailService : IService

{

 public string Name { get; set; }

 public void Execute() => throw new NotImplementedException();

 public EmailService(string name)

 {

 this.Name = name;

 }

}

static void Main(string[] args)

{

 IService service = new EmailService("Email");

 new Thread(new ParameterizedThreadStart

 (RunBackgroundService)).Start(service);

}

static void RunBackgroundService(Object service)

{

 ((IService)service).Execute(); //Long running task

}

Every thread has a thread priority. When a thread is created, its priority is set to
normal. The priority affects the execution of the thread. The higher the priority, the
higher the precedence that will be given to the thread. The thread priority can be
defined on the thread object, as follows:

static void RunBackgroundService(Object service)

{

 Thread.CurrentThread.Priority = ThreadPriority.Highest;

 ((IService)service).Execute(); //Long running task

}

RunBackgroundService is the method that executes in a separate thread, and the priority can
be set by using the ThreadPriority enum and referencing the current thread object by
calling Thread.CurrentThread, as shown in the preceding code snippet.

Thread lifetime
The lifetime of the thread depends on the method executing within that thread. Once
the method is executed, CLR de-allocates the memory taken by the thread and
disposes of. On the other hand, the thread can also be disposed of explicitly by calling
the Interrupt or Abort methods.

Another very important factor to consider is exceptions. If the exceptions are not
properly handled within a thread, they are propagated to the calling method and so on
until they reach the root method in the call stack. When it reaches this point, CLR will
shut down the thread if it is not handled.

For continuous or long-running threads, the shutdown process should be properly
defined. One of the best approaches to smoothly shut down the thread is by using a
volatile bool variable:

class Program

{

 static volatile bool isActive = true;

 static void Main(string[] args)

 {

 new Thread(new ParameterizedThreadStart

 (ExecuteLongRunningOperation)).Start(1000);

 }

 static void ExecuteLongRunningOperation(object milliseconds)

 {

 while (isActive)

 {

 //Do some other operation

 Console.WriteLine("Operation completed successfully");

 }

 }

}

In the preceding code, we have used the volatile bool variable isActive, that decides if
the while loop execute or not.

The volatile keyword indicates that a field may be modified by multiple threads that are executing at the same
time. Fields that are declared volatile are not subject to compiler optimizations that assume access by a single
thread. This ensures that the most up-to-date value is present in the field at all times. To learn more about
volatile, kindly refer the following URL:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/volatile

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/volatile

The thread pool in .NET
CLR provides a separate thread pool that contains the list of threads to be used to
execute tasks asynchronously. Each process has its own specific thread pool. CLR
adds and removes threads in or from the thread pool.

To run a thread using ThreadPool, we can use ThreadPool.QueueUserWorkItem, as shown in the
following code:

class Program

{

 static void Main(string[] args)

 {

 ThreadPool.QueueUserWorkItem(ExecuteLongRunningOperation, 1000);

 Console.Read();

 }

 static void ExecuteLongRunningOperation(object milliseconds)

 {

 Thread.Sleep((int)milliseconds);

 Console.WriteLine("Thread is executed");

 }

}

QueueUserWorkItem queues the task to be executed by the CLR in a thread that is available
in the thread pool. The task queues are maintained in First In, First Out (FIFO)
order. However, depending on the thread's availability and the task job itself, the task
completion may be delayed.

Thread synchronization
In multithreaded applications, we have shared resources that are accessible by multiple
threads executing simultaneously. The area where the resources are shared across
multiple threads is known as the critical section. To protect these resources and
provide thread-safe access, there are certain techniques that we will discuss in this
section.

Let's take an example where we have a singleton class for logging a message into the
filesystem. A singleton, by definition, denotes that there should only be one instance
shared across multiple calls. Here is the basic implementation of a singleton pattern
that is not thread-safe:

public class Logger

{

 static Logger _instance;

 private Logger() { }

 public Logger GetInstance()

 {

 _instance = (_instance == null ? new Logger() : _instance);

 return _instance;

 }

 public void LogMessage(string str)

 {

 //Log message into file system

 }

}

The preceding code is a lazy initialization singleton that creates an instance on the first
call on the GetInstance method. GetInstance is the critical section and is not thread-safe. If
multiple threads enter into the critical section, multiple instances will be created and
the race condition will occur.

The race condition is a problem in multithreaded programming that occurs when the
outcome depends on the timing of events. A race condition arises when two or more
parallel tasks access a shared object.

To implement the thread-safe singleton, we can use a locking pattern. Locking ensures
that only one thread can enter into the critical section, and if another thread attempts to
enter, it will wait until the thread is released. Here is a modified version that enables a
singleton to be thread-safe:

public class Logger

{

 private static object syncRoot = new object();

 static Logger _instance;

 private Logger() { }

 public Logger GetInstance()

 {

 if (_instance == null)

 {

 lock (syncRoot)

 {

 if (_instance == null)

 _instance = new Logger();

 }

 }

 return _instance;

 }

 public void LogMessage(string str)

 {

 //Log message into file system

 }

}

Monitors
Monitors are used to provide thread-safe access to the resource. It is applicable to
multithread programming, where there are multiple threads that need access to a
resource simultaneously. When multiple threads attempt to enter monitor to access any
resource, CLR allows only one thread at a time to enter and the other threads are
blocked. When the thread exits the monitor, the next waiting thread enters, and so on.

If we look into the Monitor class, all the methods such as Monitor.Enter and Monitor.Exit
operate on object references. Similarly to lock, Monitor also provides gated access to the
resource; however, a developer will have greater control in terms of the API it
provides.

Here is a basic example of using Monitor in .NET Core:

public class Job

{

 int _jobDone;

 object _lock = new object();

 public void IncrementJobCounter(int number)

 {

 Monitor.Enter(_lock);

 // access to this field is synchronous

 _jobDone += number;

 Monitor.Exit(_lock);

 }

}

The preceding code snippet represents a job process where multiple threads are
working on certain tasks. When the task completes, they call the IncrementJobCounter
method to increment the _jobDone counter.

There are certain cases where the critical section has to wait for the resources to be
available. Once they are available, we want to pulse the waiting block to execute.

To help us understand, let's take an example of a running Job whose task is to run the
jobs added by multiple threads. If no job is present, it should wait for the threads to
push and start executing them immediately.

In this example, we will create a JobExecutor class that runs in a separate thread. Here is
the code snippet of JobExecutor:

public class JobExecutor

{

 const int _waitTimeInMillis = 10 * 60 * 1000;

 private ArrayList _jobs = null;

 private static JobExecutor _instance = null;

 private static object _syncRoot = new object();

 //Singleton implementation of JobExecutor

 public static JobExecutor Instance

 {

 get{

 lock (_syncRoot)

 {

 if (_instance == null)

 _instance = new JobExecutor();

 }

 return _instance;

 }

}

private JobExecutor()

{

 IsIdle = true;

 IsAlive = true;

 _jobs = new ArrayList();

}

private Boolean IsIdle { get; set; }

public Boolean IsAlive { get; set; }

//Callers can use this method to add list of jobs

public void AddJobItems(List<Job> jobList)

{

 //Added lock to provide synchronous access.

 //Alternatively we can also use Monitor.Enter and Monitor.Exit

 lock (_jobs)

 {

 foreach (Job job in jobList)

 {

 _jobs.Add(job);

 }

 //Release the waiting thread to start executing the //jobs

 Monitor.PulseAll(_jobs);

 }

}

/*Check for jobs count and if the count is 0, then wait for 10 minutes by calling Monitor.Wait. Meanwhile, if new jobs are added to the list, Monitor.PulseAll will be called that releases the waiting thread. Once the waiting is over it checks the count of jobs and if the jobs are there in the list, start executing. Otherwise, wait for the new jobs */

public void CheckandExecuteJobBatch()

{

 lock (_jobs)

 {

 while (IsAlive)

 {

 if (_jobs == null || _jobs.Count <= 0)

 {

 IsIdle = true;

 Console.WriteLine("Now waiting for new jobs");

 //Waiting for 10 minutes

 Monitor.Wait(_jobs, _waitTimeInMillis);

 }

 else

 {

 IsIdle = false;

 ExecuteJob();

 }

 }

 }

}

//Execute the job

private void ExecuteJob()

{

 for(int i=0;i< _jobs.Count;i++)

 {

 Job job = (Job)_jobs[i];

 //Execute the job;

 job.DoSomething();

 //Remove the Job from the Jobs list

 _jobs.Remove(job);

 i--;

 }

}

}

It's a singleton class, and other threads can access the JobExecutor instance using the
static Instance property and call the AddJobsItems method to add the list of jobs to be
executed. The CheckandExecuteJobBatch method runs continuously and checks for new
jobs in the list every 10 minutes. Or, if it is interrupted by the AddJobsItems method by
calling the Monitor.PulseAll method, it will immediately move to the while statement and
check for the items count. If the items are present, the CheckandExecuteJobBatch method
calls the ExecuteJob method that runs that job.

Here is the code snippet of the Job class containing two properties, namely JobID and
JobName, and the DoSomething method that will print the JobID on the console:

public class Job

{

 // Properties to set and get Job ID and Name

 public int JobID { get; set; }

 public string JobName { get; set; }

 //Do some task based on Job ID as set through the JobID

 //property

 public void DoSomething()

 {

 //Do some task based on Job ID

 Console.WriteLine("Executed job " + JobID);

 }

}

Finally, on the main Program class, we can invoke three worker threads and one thread
for JobExecutor, as shown in the following code:

class Program

{

 static void Main(string[] args)

 {

 Thread jobThread = new Thread(new ThreadStart(ExecuteJobExecutor));

 jobThread.Start();

 //Starting three Threads add jobs time to time;

 Thread thread1 = new Thread(new ThreadStart(ExecuteThread1));

 Thread thread2 = new Thread(new ThreadStart(ExecuteThread2));

 Thread thread3 = new Thread(new ThreadStart(ExecuteThread3));

 Thread1.Start();

 Thread2.Start();

 thread3.Start();

 Console.Read();

 }

 //Implementation of ExecuteThread 1 that is adding three

 //jobs in the list and calling AddJobItems of a singleton

 //JobExecutor instance

 private static void ExecuteThread1()

 {

 Thread.Sleep(5000);

 List<Job> jobs = new List<Job>();

 jobs.Add(new Job() { JobID = 11, JobName = "Thread 1 Job 1" });

 jobs.Add(new Job() { JobID = 12, JobName = "Thread 1 Job 2" });

 jobs.Add(new Job() { JobID = 13, JobName = "Thread 1 Job 3" });

 JobExecutor.Instance.AddJobItems(jobs);

 }

 //Implementation of ExecuteThread2 method that is also adding

 //three jobs and calling AddJobItems method of singleton

 //JobExecutor instance

 private static void ExecuteThread2()

 {

 Thread.Sleep(5000);

 List<Job> jobs = new List<Job>();

 jobs.Add(new Job() { JobID = 21, JobName = "Thread 2 Job 1" });

 jobs.Add(new Job() { JobID = 22, JobName = "Thread 2 Job 2" });

 jobs.Add(new Job() { JobID = 23, JobName = "Thread 2 Job 3" });

 JobExecutor.Instance.AddJobItems(jobs);

 }

 //Implementation of ExecuteThread3 method that is again

 // adding 3 jobs instances into the list and

 //calling AddJobItems to add those items into the list to execute

 private static void ExecuteThread3()

 {

 Thread.Sleep(5000);

 List<Job> jobs = new List<Job>();

 jobs.Add(new Job() { JobID = 31, JobName = "Thread 3 Job 1" });

 jobs.Add(new Job() { JobID = 32, JobName = "Thread 3 Job 2" });

 jobs.Add(new Job() { JobID = 33, JobName = "Thread 3 Job 3" });

 JobExecutor.Instance.AddJobItems(jobs);

 }

 //Implementation of ExecuteJobExecutor that calls the

 //CheckAndExecuteJobBatch to run the jobs

 public static void ExecuteJobExecutor()

 {

 JobExecutor.Instance.IsAlive = true;

 JobExecutor.Instance.CheckandExecuteJobBatch();

 }

}

The following is the output of running this code:

Task parallel library (TPL)
So far, we have learned some core concepts about multithreading, and have used
threads to perform multiple tasks. Compared to the classic threading model in .NET,
TPL minimizes the complexity of using threads and provides an abstraction through a
set of APIs that helps developers to focus more on the application program instead of
focusing on how the threads will be provisioned, as well as other things.

There are several benefits of using TPL over threads:

It autoscales the concurrency to a multicore level
It autoscales LINQ queries to a multicore level
It handles the partitioning of the work and uses ThreadPool where required
It is easy to use and reduces the complexity of working with threads directly

Creating a task using TPL
TPL APIs are available in the System.Threading and System.Threading.Tasks namespaces.
They work around the task, which is a program or a block of code that runs
asynchronously. An asynchronous task can be run by calling either the Task.Run or
TaskFactory.StartNew methods. When we create a task, we provide a named delegate,
anonymous method, or a lambda expression that the task executes.

Here is a code snippet that uses a lambda expression to execute the
ExecuteLongRunningTasksmethod using Task.Run:

class Program

{

 static void Main(string[] args)

 {

 Task t = Task.Run(()=>ExecuteLongRunningTask(5000));

 t.Wait();

 }

 public static void ExecuteLongRunningTask(int millis)

 {

 Thread.Sleep(millis);

 Console.WriteLine("Hello World");

 }

}

In the preceding code snippet, we have executed the ExecuteLongRunningTask method
asynchronously using the Task.Run method. The Task.Run method returns the Task object
that can be used to further wait for the asynchronous piece of code to be executed
completely before the program ends. To wait for the task, we have used the Wait
method.

Alternatively, we can also use the Task.Factory.StartNew method, which is more advanced
and provides more options. While calling the Task.Factory.StartNew method, we can
specify CancellationToken, TaskCreationOptions, and TaskScheduler to set the state, specify
other options, and schedule tasks.

TPL uses multiple cores of the CPU out of the box. When the task is executed using
the TPL API, it automatically splits the task into one or more threads and utilizes
multiple processors, if they are available. The decision as to how many threads will be
created is calculated at runtime by CLR. Whereas a thread only has an affinity to a
single processor, running any task on multiple processors needs a
proper manual implementation.

Task-based asynchronous
pattern (TAP)
When developing any software, it is always good to implement the best practices while
designing its architecture. The task-based asynchronous pattern is one of the
recommended patterns that can be used when working with TPL. There are, however,
a few things to bear in mind while implementing TAP.

Naming convention
The method executing asynchronously should have the naming suffix Async. For
example, if the method name starts with ExecuteLongRunningOperation, it should have the
suffix Async, with the resulting name of ExecuteLongRunningOperationAsync.

Return type
The method signature should return either a System.Threading.Tasks.Task or
System.Threading.Tasks.Task<TResult>. The task's return type is equivalent to the method that
returns void, whereas TResult is the data type.

Parameters
The out and ref parameters are not allowed as parameters in the method signature. If
multiple values need to be returned, tuples or a custom data structure can be used. The
method should always return Task or Task<TResult>, as discussed previously.

Here are a few signatures for both synchronous and asynchronous methods:

Synchronous method Asynchronous method

Void Execute(); Task ExecuteAsync();

List<string> GetCountries(); Task<List<string>> GetCountriesAsync();

Tuple<int, string> GetState(int

stateID);

Task<Tuple<int, string>> GetStateAsync(int

stateID);

Person GetPerson(int personID); Task<Person> GetPersonAsync(int personID);

Exceptions
The asynchronous method should always throw exceptions that are assigned to the
returning task. However, the usage errors, such as passing null parameters to the
asynchronous method, should be properly handled.

Let's suppose we want to generate several documents dynamically based on a
predefined templates list, where each template populates the placeholders with
dynamic values and writes it on the filesystem. We assume that this operation will take
a sufficient amount of time to generate a document for each template. Here is a code
snippet showing how the exceptions can be handled:

static void Main(string[] args)

{

 List<Template> templates = GetTemplates();

 IEnumerable<Task> asyncDocs = from template in templates select

 GenerateDocumentAsync(template);

 try

 {

 Task.WaitAll(asyncDocs.ToArray());

 }catch(Exception ex)

 {

 Console.WriteLine(ex);

 }

 Console.Read();

}

private static async Task<int> GenerateDocumentAsync(Template template)

{

 //To automate long running operation

 Thread.Sleep(3000);

 //Throwing exception intentionally

 throw new Exception();

}

In the preceding code, we have a GenerateDocumentAsync method that performs a long
running operation, such as reading the template from the database, populating
placeholders, and writing a document to the filesystem. To automate this process, we
used Thread.Sleep to sleep the thread for three seconds and then throw an exception that
will be propagated to the calling method. The Main method loops the templates list and
calls the GenerateDocumentAsync method for each template. Each GenerateDocumentAsync
method returns a task. When calling an asynchronous method, the exception is actually
hidden until the Wait, WaitAll, WhenAll, and other methods are called. In the preceding
example, the exception will be thrown once the Task.WaitAll method is called, and will
log the exception on the console.

Task status
The task object provides a TaskStatus that is used to know whether the task is executing
the method running, has completed the method, has encountered a fault, or whether
some other occurrence has taken place. The task initialized using Task.Run initially has
the status of Created, but when the Start method is called, its status is changed to Running.
When applying the TAP pattern, all the methods return the Task object, and whether
they are using the Task.Run inside, the method body should be activated. That means
that the status should be anything other than Created. The TAP pattern ensures the
consumer that the task is activated and the starting task is not required.

Task cancellation
Cancellation is an optional thing for TAP-based asynchronous methods. If the method
accepts the CancellationToken as the parameter, it can be used by the caller party to cancel
a task. However, for a TAP, the cancellation should be properly handled. Here is a
basic example showing how cancellation can be implemented:

static void Main(string[] args)

{

 CancellationTokenSource tokenSource = new CancellationTokenSource();

 CancellationToken token = tokenSource.Token;

 Task.Factory.StartNew(() => SaveFileAsync(path, bytes, token));

}

static Task<int> SaveFileAsync(string path, byte[] fileBytes, CancellationToken cancellationToken)

{

 if (cancellationToken.IsCancellationRequested)

 {

 Console.WriteLine("Cancellation is requested...");

 cancellationToken.ThrowIfCancellationRequested

 }

 //Do some file save operation

 File.WriteAllBytes(path, fileBytes);

 return Task.FromResult<int>(0);

}

In the preceding code, we have a SaveFileAsync method that takes the byte array and the
CancellationToken as parameters. In the Main method, we initialize the
CancellationTokenSource that can be used to cancel the asynchronous operation later in the
program. To test the cancellation scenario, we will just call the Cancel method of the
tokenSource after the Task.Factory.StartNew method and the operation will be canceled.
Moreover, when the task is canceled, its status is set to Cancelled and the IsCompleted
property is set to true.

Task progress reporting
With TPL, we can use the IProgress<T> interface to get real-time progress notifications
from the asynchronous operations. This can be used in scenarios where we need to
update the user interface or the console app of asynchronous operations. When
defining the TAP-based asynchronous methods, defining IProgress<T> in a parameter is
optional. We can have overloaded methods that can help consumers to use in the case
of specific needs. However, they should only be used if the asynchronous method
supports them. Here is the modified version of SaveFileAsync that updates the user about
the real progress:

static void Main(string[] args)

{

 var progressHandler = new Progress<string>(value =>

 {

 Console.WriteLine(value);

 });

 var progress = progressHandler as IProgress<string>;

 CancellationTokenSource tokenSource = new CancellationTokenSource();

 CancellationToken token = tokenSource.Token;

 Task.Factory.StartNew(() => SaveFileAsync(path, bytes,

 token, progress));

 Console.Read();

}

static Task<int> SaveFileAsync(string path, byte[] fileBytes, CancellationToken cancellationToken, IProgress<string> progress)

{

 if (cancellationToken.IsCancellationRequested)

 {

 progress.Report("Cancellation is called");

 Console.WriteLine("Cancellation is requested...");

 }

 progress.Report("Saving File");

 File.WriteAllBytes(path, fileBytes);

 progress.Report("File Saved");

 return Task.FromResult<int>(0);

}

Implementing TAP using
compilers
Any method that is attributed with the async keyword (for C#) or Async for (Visual
Basic) is called an asynchronous method. The async keyword can be applied to a
method, anonymous method, or a Lambda expression, and the language compiler can
execute that task asynchronously.

Here is a simple implementation of the TAP method using the compiler approach:

static void Main(string[] args)

{

 var t = ExecuteLongRunningOperationAsync(100000);

 Console.WriteLine("Called ExecuteLongRunningOperationAsync method,

 now waiting for it to complete");

 t.Wait();

 Console.Read();

}

public static async Task<int> ExecuteLongRunningOperationAsync(int millis)

{

 Task t = Task.Factory.StartNew(() => RunLoopAsync(millis));

 await t;

 Console.WriteLine("Executed RunLoopAsync method");

 return 0;

}

public static void RunLoopAsync(int millis)

{

 Console.WriteLine("Inside RunLoopAsync method");

 for(int i=0;i< millis; i++)

 {

 Debug.WriteLine($"Counter = {i}");

 }

 Console.WriteLine("Exiting RunLoopAsync method");

}

In the preceding code, we have the ExecuteLongRunningOperationAsync method, which is
implemented as per the compiler approach. It calls the RunLoopAsync that executes a loop
for a certain number of milliseconds that is passed in the parameter. The async keyword
on the ExecuteLongRunningOperationAsync method actually tells the compiler that this method
has to be executed asynchronously, and, once the await statement is reached, the
method returns to the Main method that writes the line on a console and waits for the
task to be completed. Once the RunLoopAsync is executed, the control comes back to await
and starts executing the next statements in the ExecuteLongRunningOperationAsync method.

Implementing TAP with greater
control over Task
As we know, that the TPL is centered on the Task and Task<TResult> objects. We can
execute an asynchronous task by calling the Task.Run method and execute a delegate
method or a block of code asynchronously and use Wait or other methods on that task.
However, this approach is not always adequate, and there are scenarios where we may
have different approaches to executing asynchronous operations, and we may use an
Event-based Asynchronous Pattern (EAP) or an Asynchronous Programming
Model (APM). To implement TAP principles here, and to get the same control over
asynchronous operations executing with different models, we can use the
TaskCompletionSource<TResult> object.

The TaskCompletionSource<TResult> object is used to create a task that executes an
asynchronous operation. When the asynchronous operation completes, we can use
the TaskCompletionSource<TResult> object to set the result, exception, or state of the task.

Here is a basic example that executes the ExecuteTask method that returns Task, where the
ExecuteTask method uses the TaskCompletionSource<TResult> object to wrap the response as a
Task and executes the ExecuteLongRunningTask through the Task.StartNew method:

static void Main(string[] args)

{

 var t = ExecuteTask();

 t.Wait();

 Console.Read();

}

public static Task<int> ExecuteTask()

{

 var tcs = new TaskCompletionSource<int>();

 Task<int> t1 = tcs.Task;

 Task.Factory.StartNew(() =>

 {

 try

 {

 ExecuteLongRunningTask(10000);

 tcs.SetResult(1);

 }catch(Exception ex)

 {

 tcs.SetException(ex);

 }

 });

 return tcs.Task;

}

public static void ExecuteLongRunningTask(int millis)

{

 Thread.Sleep(millis);

 Console.WriteLine("Executed");

}

Design patterns for parallel
programming
There are various ways in which the tasks can be designed to run in parallel. In this
section, we will learn some top design patterns used in TPL:

Pipeline pattern
Dataflow pattern
Producer-consumer pattern
Parallel.ForEach
Parallel LINQ (PLINQ)

Pipeline pattern
The pipeline pattern is commonly used in scenarios where we need to execute the
asynchronous tasks in sequence:

Consider a task where we need to create a user record first, then initiate a workflow
and send an email. To implement this scenario, we can use the ContinueWith method of
TPL. Here is a complete example:

static void Main(string[] args)

{

 Task<int> t1 = Task.Factory.StartNew(() =>

 { return CreateUser(); });

 var t2=t1.ContinueWith((antecedent) =>

 { return InitiateWorkflow(antecedent.Result); });

 var t3 = t2.ContinueWith((antecedant) =>

 { return SendEmail(antecedant.Result); });

 Console.Read();

}

public static int CreateUser()

{

 //Create user, passing hardcoded user ID as 1

 Thread.Sleep(1000);

 Console.WriteLine("User created");

 return 1;

}

public static int InitiateWorkflow(int userId)

{

 //Initiate Workflow

 Thread.Sleep(1000);

 Console.WriteLine("Workflow initiates");

 return userId;

}

public static int SendEmail(int userId)

{

 //Send email

 Thread.Sleep(1000);

 Console.WriteLine("Email sent");

 return userId;

}

Dataflow pattern
The dataflow pattern is a generalized pattern with a one-to-many and a many-to-one
relationship. For example, the following diagram represents two tasks, Task 1 and
Task 2, that execute in parallel, and a third task, Task 3, that will only start when both
of the first two tasks are completed. Once Task 3 is completed, Task 4 and Task 5
will be executed in parallel:

We can implement the preceding example using the following code:

static void Main(string[] args)

{

 //Creating two tasks t1 and t2 and starting them at the same //time

 Task<int> t1 = Task.Factory.StartNew(() => { return Task1(); });

 Task<int> t2 = Task.Factory.StartNew(() => { return Task2(); });

 //Creating task 3 and used ContinueWhenAll that runs when both the

 //tasks T1 and T2 will be completed

 Task<int> t3 = Task.Factory.ContinueWhenAll(

 new[] { t1, t2 }, (tasks) => { return Task3(); });

 //Task 4 and Task 5 will be started when Task 3 will be completed.

 //ContinueWith actually creates a continuation of executing tasks

 //T4 and T5 asynchronously when the task T3 is completed

 Task<int> t4 = t3.ContinueWith((antecendent) => { return Task4(); });

 Task<int> t5 = t3.ContinueWith((antecendent) => { return Task5(); });

 Console.Read();

}

//Implementation of Task1

public static int Task1()

{

 Thread.Sleep(1000);

 Console.WriteLine("Task 1 is executed");

 return 1;

}

//Implementation of Task2

public static int Task2()

{

 Thread.Sleep(1000);

 Console.WriteLine("Task 2 is executed");

 return 1;

}

//Implementation of Task3

public static int Task3()

{

 Thread.Sleep(1000);

 Console.WriteLine("Task 3 is executed");

 return 1;

}

Implementation of Task4

public static int Task4()

{

 Thread.Sleep(1000);

 Console.WriteLine("Task 4 is executed");

 return 1;

}

//Implementation of Task5

public static int Task5()

{

 Thread.Sleep(1000);

 Console.WriteLine("Task 5 is executed");

 return 1;

}

Producer/consumer pattern
One of the best patterns to execute long-running operations is the producer/consumer
pattern. In this pattern, there are producers and consumers, and one or more producers
are connected to one or more consumers through a shared data structure known as
BlockingCollection. BlockingCollection is a fixed-sized collection used in parallel
programming. If the collection is full, the producers are blocked, and if the collection
is empty, no more consumers should be added:

In a real-world example, the producer could be a component reading images from a
database and the consumer could be a component that processes that image and saves
it into a filesystem:

static void Main(string[] args)

{

 int maxColl = 10;

 var blockingCollection = new BlockingCollection<int>(maxColl);

 var taskFactory = new TaskFactory(TaskCreationOptions.LongRunning,

 TaskContinuationOptions.None);

 Task producer = taskFactory.StartNew(() =>

 {

 if (blockingCollection.Count <= maxColl)

 {

 int imageID = ReadImageFromDB();

 blockingCollection.Add(imageID);

 blockingCollection.CompleteAdding();

 }

 });

 Task consumer = taskFactory.StartNew(() =>

 {

 while (!blockingCollection.IsCompleted)

 {

 try

 {

 int imageID = blockingCollection.Take();

 ProcessImage(imageID);

 }

 catch (Exception ex)

 {

 //Log exception

 }

 }

 });

 Console.Read();

}

public static int ReadImageFromDB()

{

 Thread.Sleep(1000);

 Console.WriteLine("Image is read");

 return 1;

}

public static void ProcessImage(int imageID)

{

 Thread.Sleep(1000);

 Console.WriteLine("Image is processed");

}

In the preceding example, we initialized the generic BlockingCollection<int> to store the
imageID that will be added by the producer and processed through the consumer. We set
the maximum size of the collection to 10. Then, we added a Producer item that reads the
image from a database and calls the Add method to add the imageID in the blocking
collection, which can be further picked up and processed by the consumer. The
consumer task just checks any available item in the collection and processes it.

To learn more about the data structures available for parallel programming, please refer to https://docs.microsof
t.com/en-us/dotnet/standard/parallel-programming/data-structures-for-parallel-programming.

https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/data-structures-for-parallel-programming

Parallel.ForEach
The Parallel.ForEach is a multithreaded version of the classic foreach loop. The foreach
loop runs on a single thread, whereas the Parallel.ForEach runs on multiple threads and
utilizes multiple cores of the CPU, if available.

Here is a basic example using Parallel.ForEach on a list of documents that needs to be
processed, and which contains an I/O-bound operation:

static void Main(string[] args)

{

 List<Document> docs = GetUserDocuments();

 Parallel.ForEach(docs, (doc) =>

 {

 ManageDocument(doc);

 });

}

private static void ManageDocument(Document doc) => Thread.Sleep(1000);

To replicate the I/O-bound operation, we just added a delay of 1 second to the
ManageDocument method. If you execute the same method using the foreach loop, the
difference will be obvious.

Parallel LINQ (PLINQ)
Parallel LINQ is a version of LINQ that executes queries in parallel on multi-core
CPUs. It contains the full set of standard LINQ query operators plus some additional
operators for parallel operations. It is highly advisable that you use this for long-
running tasks, although incorrect use may slow down the performance of your app.
Parallel LINQ operates on collections such as List, List<T>, IEnumerable, IEnumerable<T> and
so on. Under the hood, it splits the list into segments and runs each segment on a
different processor of the CPU.

Here is a modified version of the previous example, with Parallel.ForEach instead of the
PLINQ operation:

static void Main(string[] args)

{

 List<Document> docs = GetUserDocuments();

 var query = from doc in docs.AsParallel()

 select ManageDocument(doc);

}

private static Document ManageDocument(Document doc)

{

 Thread.Sleep(1000);

 return doc;

}

Summary
In this chapter, we have learned about the core fundamentals of multithreaded and
asynchronous programming. The chapter starts with the basic differences between both
and walks you through some core concepts about multithreading, what APIs there are
available, and how to write multithreading applications. We also looked at how the
task-programming library can be used to serve asynchronous operations and how to
implement the task asynchronous pattern. Finally, we explored parallel programming
techniques and some of the best design patterns that are used for these techniques.

In the next chapter, we will explore the types of data structures and their impact on
performance, how to write optimized code, and some best practices.

Data Structures and Writing
Optimized Code in C#
Data structures are a particular way of storing data in software engineering. They play
a vital role in storing data in a computer so that it can be accessed and modified
efficiently, and they provide different storing mechanisms for storing different types of
data. There are many types of data structure, and each one is designed to store a
definite type of data. In this chapter, we will cover data structures in detail and learn
which data structures should be used for particular scenarios in order to improve the
performance of the system as regards data storage and retrieval. We will also learn
how we can write optimized code in C# and what primary factors can affect
performance, which is sometimes overlooked by developers when coding programs.
We will learn some best practices that can be used to optimize code that is
performance effective.

In this chapter, we will cover the following topics:

What data structures are and their characteristics
Choosing the right data structure for performance optimizations
Understand the use of Big O notation to measure the performance and complexity
of a program
Best practices when writing code in .NET Core

What are data structures?
A data structure is a way of storing and unifying data in such a way that operations on
that data can be performed in an efficient manner. The data can be stored in several
ways. For example, we can have a Person object that contains a few properties, such
as PersonID and PersonName, where PersonID is of the integer type and PersonName is of the
string type. This Person object stores the data in memory, and can be further used to
save that record in the database. Another example is an array called Countries of
the string type that contains a list of countries. We can use the Countries array to retrieve
a country name and use it in a program. Therefore, any type of object that stores data is
called a data structure. All primitive types, such as integers, strings, chars, and
Booleans, are different types of data structure, whereas other collection types, such
as LinkedList, ArrayList, SortedList, and others, are also types of data structure that can
store information in exclusive ways.

The following diagram illustrates the types of data structures and their relationship to
each other:

There are two types of data structure: primitive and nonprimitive types. Primitive types
are value types that include signed integral, unsigned integral, unicode characters,
IEEE floating point, high-precision decimal, Boolean, enum, struct and nullable value
types.

Here is a list of the primitive data types available in C#:

Primitive types

Signed integral sbyte, short, int, long

Unsigned integral byte, ushort, uint, ulong

Unicode characters Char

IEEE floating point float, double

High-precision decimal Decimal

Boolean Bool

String String

Object System.Object

Nonprimitive types are user-defined types, and further categorized as linear or
nonlinear types. In a linear data structure, the elements are organized in a sequence,
such as in Array, Linked List, and other related types, whereas in a nonlinear data
structure, the elements are stored without any sequence, such as in trees and graphs.

The following table shows the types of linear and nonlinear classes available in .NET
Core:

Nonprimitive types - linear
data structures

ArrayList, String[], primitive typed arrays, List,

Array Dictionary, Hashtable, BitArray

Stack Stack<T>, SortedSet<T>, SynchronizedCollection<T>

Queue Queue<T>

Linked list LinkedList<T>

.NET Core does not provide any nonprimitive, nonlinear types to represent data in tree
or graph formats. However, we can develop custom classes to support these kinds of
types.

For example, here is the code to write a custom tree that stores data in the tree format:

class TreeNode

{

 public TreeNode(string text, object tag)

 {

 this.NodeText = text;

 this.Tag = tag;

 Nodes = new List<TreeNode>();

 }

 public string NodeText { get; set; }

 public Object Tag { get; set; }

 public List<TreeNode> Nodes { get; set; }

}

Finally, we can write a program to populate a tree view on the console window as
follows:

static void Main(string[] args)

{

 TreeNode node = new TreeNode("Root", null);

 node.Nodes.Add(new TreeNode("Child 1", null));

 node.Nodes[0].Nodes.Add(new TreeNode("Grand Child 1", null));

 node.Nodes.Add(new TreeNode("Child 1 (Sibling)", null));

 PopulateTreeView(node, "");

 Console.Read();

}

//Populates a Tree View on Console

static void PopulateTreeView(TreeNode node, string space)

{

 Console.WriteLine(space + node.NodeText);

 space = space + " ";

 foreach(var treenode in node.Nodes)

 {

 //Recurive call

 PopulateTreeView(treenode, space);

 }

}

When you run the preceding program, it generates the following output:

Understanding the use of Big O
notation to measure the
performance and complexity of
an algorithm
Big O notation is used to define the complexity and performance of an algorithm with
respect to time or space consumed during execution. It is an essential technique to
express the performance of an algorithm and determine the worst-case complexity of
the program.

To understand it in detail, let's go through some code examples and use Big O notation
to calculate their performance.

If we calculate the complexity of the following program, the Big O notation will be
equal to O(1):

static int SumNumbers(int a, int b)

{

 return a + b;

}

This is because, however the parameter is specified, it is just adding and returning it.

Let's consider another program that loops through the list. The Big O notation will be
determined as O(N):

static bool FindItem(List<string> items, string value)

{

 foreach(var item in items)

 {

 if (item == value)

 {

 return true;

 }

 }

 return false;

}

In the preceding example, the program is looping through the item list and comparing
the value passed as a parameter with each item in the list. If the item is found, the
program returns true.

The complexity is determined as O(N) because the worst-case scenario could be a loop
towards N items where N could be either a first index or any index until it reaches the
last index, which is N.

Now, let's look at an example of the selection sort, which is defined as O(N2):

static void SelectionSort(int[] nums)

{

 int i, j, min;

 // One by one move boundary of unsorted subarray

 for (i = 0; i <nums.Length-1; i++)

 {

 min = i;

 for (j = i + 1; j < nums.Length; j++)

 if (nums[j] < nums[min])

 min = j;

 // Swap the found minimum element with the first element

 int temp = nums[min];

 nums[min] = nums[i];

 nums[i] = temp;

 }

}

In the preceding example, we have two loops that are nested. The first loop traverses
from 0 to the last index, whereas the second loop traverses from the next item to the
penultimate item and swaps the values to sort the array in ascending order. The
number of nested loops is directly proportional to the power of N, hence the Big O
notation is defined as O(N2).

Next, let's consider a recursive function where the Big O notation is defined as O(2N),
where 2N determines the time taken, which doubles with each additional element in
the input dataset that runs for an exponential period of time. Here is an example of
a Fibonacci_Recursive method that recursively calls the method until the counter becomes
equal to the maximum number:

static void Main(string[] args){

 Fibonacci_Recursive(0, 1, 1, 10);

}

static void Fibonacci_Recursive(int a, int b, int counter, int maxNo)

{

 if (counter <= maxNo)

 {

 Console.Write("{0} ", a);

 Fibonacci_Recursive(b, a + b, counter + 1, len);

 }

}

Logarithms
A logarithm operation is the complete opposite of an exponential operation. The
logarithm is a quantity representing the power to which a base number must be raised
to produce a given number.

For example, 2x = 32, where x=5, can be represented as log2 32 =5.

In this case, the logarithm of above expression is 5 that represents the power of a fixed
number 2 which is raised to produce a given number 32.

Consider a binary search algorithm that works more effectively by splitting the list of
an item into two datasets and uses a specific dataset based on the number. For
example, say that I have a list of different numbers sorted in ascending order:

{1, 5, 6, 10, 15, 17, 20, 42, 55, 60, 67, 80, 100}

Say that we want to find number 55. One way to do this is to loop through each index
and check each item one by one. The more effective way is to split the list into two
sets and check whether the number I am looking for is greater than the last item of the
first dataset or to use the second dataset.

Here is an example of a binary search whose Big O notation will be determined as
O(LogN):

static int binarySearch(int[] nums, int startingIndex, int length, int itemToSearch)

{

 if (length >= startingIndex)

 {

 int mid = startingIndex + (length - startingIndex) / 2;

 // If the element found at the middle itself

 if (nums[mid] == itemToSearch)

 return mid;

 // If the element is smaller than mid then it is

 // present in left set of array

 if (nums[mid] > itemToSearch)

 return binarySearch(nums, startingIndex, mid - 1, itemToSearch);

 // Else the element is present in right set of array

 return binarySearch(nums, mid + 1, length, itemToSearch);

 }

 // If item not found return 1

 return -1;

}

Choosing the right data
structure for performance
optimization
A data structure is a precise way of organizing data in a computer program. If data is
not efficiently stored in the right data structure, it may lead to some performance issues
that impact the overall experience of the application.

In this section, we will learn the advantages and disadvantages of the different
collection types available in .NET Core and which ones are the better types for
particular scenarios:

Arrays and lists
Stacks and queues
LinkedLists (single, double, and circular)
Dictionaries, hashtables, and hashsets
Generic lists

Arrays
An array is a collection that holds similar types of elements. Arrays of both value types
and reference types can be created.

Here are few circumstances where arrays are useful:

If the data is of a fixed, set length, using an array is a better option as it is faster
than other collections, such as arraylists and generic lists
Arrays are good to represent data in a multidimensional way
They take less memory compared to other collections
With arrays, we can iterate through elements sequentially

The following table shows the Big O notation for each operation that can be performed
in an array:

Operations Big O notation

Access by Index O(1)

Search O(n)

Insert at the end O(n)

Remove at the end O(n)

Insert at a position before the last element O(n)

Remove an element at an index O(1)

As shown in the preceding table, the search for and insertion of an item in a specific

position degrades performance, whereas accessing any item in an index or removing it
from any position has a lower impact on performance.

Lists
Lists are extensively used by .NET developers. Although it is preferable to use it in
many scenarios, there are some performance limitations, too.

Using lists is mostly advisable when you want to access the item using its index.
Unlike a linked list, where you have to iterate over each node using an enumerator to
search for the item, with a list, we can easily access it using an index.

Here are few recommendations where lists are useful:

It is recommended that you use list when the collection size is not known.
Resizing arrays is an expensive operation, and with lists we can easily grow the
size of the collection by just adding to it as needed.
Unlike arrays, lists do not reserve the total memory address space for the number
of items when it is created. This is because, with lists, specifying the size of the
collection is not needed. On the other hand, arrays depend on the type and the size
at which it is initialized, and reserve the address space during initialization.
With lists, we can use lambda expressions to filter out records, sort items in
descending order, and execute other operations. Arrays do not provide sorting,
filtering, or other such operations.
Lists represent a single dimension collection.

The following table shows the Big O notation for each operation that can be performed
on lists:

Operations Big O notation

Access by index O(1)

Search O(n)

Insert at the end O(1)

Remove from the end O(1)

Insert at a position before the last element O(n)

Remove an element at an index O(n)

Stacks
Stacks maintain a collection of items in Last In First Out (LIFO) order. The last item
to be inserted is retrieved first. Only two operations are allowed on stacks, namely push
and pop. The real application of a stack is an undo operation that inserts the changes into
the stack and, on undoing, removes the last action that was performed:

The preceding diagram illustrates how the items are added to the stack. The last
inserted item pops out first, and to access the first item that was inserted, we have to
pop out each element until it reaches the first one.

Here are a few of the circumstance where stacks are useful:

Scenarios where the item should be removed when its value is accessed
Where an undo operation needs to be implemented in a program
To maintain navigation history on a web application
Recursive operations

The following table shows the Big O notation for each operation that can be performed
on stacks:

Operations Big O notation

Access to the first object O(1)

Search O(n)

Push item O(1)

Pop item O(1)

Queue
Queues maintain a collection of items in a First In First Out (FIFO) order. The item
inserted into the queue first is retrieved first from the queue. Only three operations are
allowed in queues, namely Enqueue, Dequeue, and Peek.

Enqueue adds an element to the end of the queue, whereas Dequeue removes the element
from the start of the queue. Peek returns the oldest elements in the queue but does not
remove them:

The preceding diagram illustrates how items are added to the queue. The item inserted
first will be removed first from the queue and the pointer moves to the next item in the
queue. Peek always returns the first item that was inserted or the item to which the
pointer is set, based on whether the first item is removed.

Here are some of the circumstances where queues are useful:

To process items in a sequence
To serve an order based on a first-come-first-served basis

The following table shows the Big O notation for each operation that can be performed
on queues:

Operations Big O notation

Access to the first object inserted O(1)

Search O(n)

Queue item O(1)

Enqueue item O(1)

Peek item O(1)

Linked lists
The linked list is a linear data structure where each node in the list contains the
reference pointer to the next node, and the last node has a reference to null. The first
node is known as the head. There are three types of linked list, known as singly,
doubly, and circular linked lists.

Singly linked lists
Singly linked lists contain only the reference to the next node. The following diagram
represents the singly linked list:

Doubly linked lists
In doubly linked lists, the nodes contain the references of both the next node and the
previous node. The user can iterate forward and backward using reference pointers.
The following image is a representation of a doubly linked list:

Circular linked lists
In circular linked lists, the last node points back to the first node. Here is a
representation of a circular linked list:

Here are a few circumstances where a linked list is useful:

To provide access to an item in a sequential manner
Insert an item in any position of the list
Remove any item at any point or node
When you need to consume less memory, as there is no array copy in the linked
list

The following table shows the Big O notation value for each operation that can be
performed on linked lists:

Operations Big O notation

Access the item O(1)

Search for the item O(n)

Insert item O(1)

Delete item O(1)

Dictionaries, hashtables, and
hashsets
Dictionary, hashtable, and hashset objects store items in key—value format. However,
hashsets and dictionaries are good for scenarios where performance is key. Here are a
few circumstances where these types are useful:

To store an item in key–value format that can be retrieved based on a particular
key
To store unique values

The following table shows the Big O notation value for each operation that can be
performed on these objects:

Operations Big O notation

Access O(n)

Search for the value if the key is not known O(n)

Insert item O(n)

Delete item O(n)

Generic lists
The generic list is a strongly typed list of elements that is accessed using an index. In
contrast to arrays, generic lists are expandable, and the list can grow dynamically; for
this reason, they are known as dynamics arrays or vectors. Unlike arrays, generic lists
are one dimensional, and are one of the best options for manipulating an in-memory
collection of elements.

We can define a generic list as shown in the following code example. The code phrase
lstNumbers allows only integer values to be stored, the phrase lstNames stores the only
string, personLst stores Person objects, and so on:

List<int> lstNumbers = new List<int>();

List<string> lstNames = new List<string>();

List<Person> personLst = new List<Person>();

HashSet<int> hashInt = new HashSet<int>();

The following table shows the Big O notation value for each operation that can be
performed on these objects:

Operations Big O notation

Access by index O(1)

Search O(n)

Insert at the end O(1)

Remove from the end O(1)

Insert at a position before the last
element O(n)

Remove an element at an index O(n)

Best practices in writing
optimized code in C#
There are many factors that negatively impact the performance of a .NET Core
application. Sometimes these are minor things that were not considered earlier at the
time of writing the code, and are not addressed by the accepted best practices. As a
result, to solve these problems, programmers often resort to ad hoc solutions.
However, when bad practices are combined together, they produce performance issues.
It is always better to know the best practices that help developers write cleaner code
and make the application performant.

In this section, we will learn, the following topics:

Boxing and unboxing overhead
String concatenation
Exceptions handling
for versus foreach
Delegates

Boxing and unboxing overhead
The boxing and unboxing methods are not always good to use and they negatively
impact the performance of mission-critical applications. Boxing is a method of
converting a value type to an object type, and is done implicitly, whereas unboxing is a
method of converting an object type back to a value type and requires explicit casting.

Let's go through an example where we have two methods executing a loop of 10
million records, and in each iteration, they are incrementing the counter by 1. The
AvoidBoxingUnboxing method is using a primitive integer to initialize and increment it on
each iteration, whereas the BoxingUnboxing method is boxing by assigning the numeric
value to the object type first and then unboxing it on each iteration to convert it back to
the integer type, as shown in the following code:

private static void AvoidBoxingUnboxing()

{

 Stopwatch watch = new Stopwatch();

 watch.Start();

 //Boxing

 int counter = 0;

 for (int i = 0; i < 1000000; i++)

 {

 //Unboxing

 counter = i + 1;

 }

 watch.Stop();

 Console.WriteLine($"Time taken {watch.ElapsedMilliseconds}");

}

private static void BoxingUnboxing()

{

 Stopwatch watch = new Stopwatch();

 watch.Start();

 //Boxing

 object counter = 0;

 for (int i = 0; i < 1000000; i++)

 {

 //Unboxing

 counter = (int)i + 1;

 }

 watch.Stop();

 Console.WriteLine($"Time taken {watch.ElapsedMilliseconds}");

}

When we run both methods, we will clearly see the differences in performance. The
BoxingUnboxing is executed seven times slower than the AvoidBoxingUnboxing method, as
shown in the following screenshot:

For mission-critical applications, it's always better to avoid boxing and unboxing.
However, in .NET Core, we have many other types that internally use objects and
perform boxing and unboxing. Most of the types under System.Collections and
System.Collections.Specialized use objects and object arrays for internal storage, and when
we store primitive types in these collections, they perform boxing and convert each
primitive value to an object type, adding extra overhead and negatively impacting the
performance of the application. Other types of System.Data, namely DateSet, DataTable, and
DataRow, also use object arrays under the hood.

Types under the System.Collections.Generic namespace or typed arrays are the best
approaches to use when performance is the primary concern. For example, HashSet<T>,
LinkedList<T>, and List<T> are all types of generic collections.

For example, here is a program that stores the integer value in ArrayList:

private static void AddValuesInArrayList()

{

 Stopwatch watch = new Stopwatch();

 watch.Start();

 ArrayList arr = new ArrayList();

 for (int i = 0; i < 1000000; i++)

 {

 arr.Add(i);

 }

 watch.Stop();

 Console.WriteLine($"Total time taken is

 {watch.ElapsedMilliseconds}");

}

Let's write another program that uses a generic list of the integer type:

private static void AddValuesInGenericList()

{

 Stopwatch watch = new Stopwatch();

 watch.Start();

 List<int> lst = new List<int>();

 for (int i = 0; i < 1000000; i++)

 {

 lst.Add(i);

 }

 watch.Stop();

 Console.WriteLine($"Total time taken is

 {watch.ElapsedMilliseconds}");

}

When running both programs, the differences are pretty noticeable. The code with the
generic list List<int> is over 10 times faster than the code with ArrayList. The result is as
follows:

String concatenation
In .NET, strings are immutable objects. Two strings refer to the same memory on the
heap until the string value is changed. If any of the string is changed, a new string is
created on the heap and is allocated a new memory space. Immutable objects are
generally thread safe and eliminate the race conditions between multiple threads. Any
change in the string value creates and allocates a new object in memory and avoids
producing conflicting scenarios with multiple threads.

For example, let's initialize the string and assign the Hello World value to the a string
variable:

String a = "Hello World";

Now, let's assign the a string variable to another variable, b:

String b = a;

Both a and b point to the same value on the heap, as shown in the following diagram:

Now, suppose we change the value of b to Hope this helps:

b= "Hope this helps";

This will create another object on the heap, where a points to the same and b refers to
the new memory space that contains the new text:

With each change in the string, the object allocates a new memory space. In some
cases, it may be an overkill scenario, where the frequency of string modification is
higher and each modification is allocated a separate memory space, creates work for
the garbage collector in collecting the unused objects and freeing up space. In such a
scenario, it is highly recommended that you use the StringBuilder class.

Exception handling
Improper handling of exceptions also decreases the performance of an application. The
following list contains some of the best practices in dealing with exceptions in .NET
Core:

Always use a specific exception type or a type that can catch the exception for the
code you have written in the method. Using the Exception type for all cases is not a
good practice.
It is always a good practice to use try, catch, and finally block where the code can
throw exceptions. The final block is usually used to clean up the resources, and
returns a proper response that the calling code is expecting.
In deeply nested code, don't use try catch block and handle it to the calling method
or main method. Catching exceptions on multiple stacks slows down performance
and is not recommended.
Always use exceptions for fatal conditions that terminate the program.
Using exceptions for noncritical conditions, such as converting the value to an
integer or reading the value from an empty array, is not recommended and should
be handled through custom logic. For example, converting a string value to the
integer type can be done by using the Int32.Parse method rather than by using
the Convert.ToInt32 method and then failing at a point when the string is not
represented as a digit.
While throwing an exception, add a meaningful message so that the user knows
where that exception has actually occurred rather than going through the stack
trace. For example, the following code shows a way of throwing an exception and
adding a custom message based on the method and class being called:

static string GetCountryDetails(Dictionary<string, string> countryDictionary, string key)

{

 try

 {

 return countryDictionary[key];

 }

 catch (KeyNotFoundException ex)

 {

 KeyNotFoundException argEx = new KeyNotFoundException("

 Error occured while executing GetCountryDetails method.

 Cause: Key not found", ex);

 throw argEx;

 }

}

Throw exceptions rather than returning the custom messages or error codes and
handle it in the main calling method.
When logging exceptions, always check the inner exception and read the
exception message or stack trace. It is helpful, and gives the actual point in the

code where the error is thrown.

For and foreach
For and foreach are two of the alternative ways of iterating over a list of items. Each of
them operates in a different way. The for loop actually loads all the items of the list in
memory first and then uses an indexer to iterate over each element, whereas foreach
uses an enumerator and iterates until it reaches the end of the list.

The following table shows the types of collections that are good to use for for and
foreach:

Type For/Foreach

Typed array Good for both

Array list Better with for

Generic collections Better with for

Delegates
Delegates are a type in .NET which hold the reference to the method. The type is
equivalent to the function pointer in C or C++. When defining a delegate, we can
specify both the parameters that the method can take and its return type. This way, the
reference methods will have the same signature.

Here is a simple delegate that takes a string and returns an integer:

delegate int Log(string n);

Now, suppose we have a LogToConsole method that has the same signature as the one
shown in the following code. This method takes the string and writes it to the console
window:

static int LogToConsole(string a) { Console.WriteLine(a);

 return 1;

}

We can initialize and use this delegate like this:

Log logDelegate = LogToConsole;

logDelegate ("This is a simple delegate call");

Suppose we have another method called LogToDatabase that writes the information in the
database:

static int LogToDatabase(string a)

{

 Console.WriteLine(a);

 //Log to database

 return 1;

}

Here is the initialization of the new logDelegate instance that references the LogToDatabase
method:

Log logDelegateDatabase = LogToDatabase;

logDelegateDatabase ("This is a simple delegate call");

The preceding delegate is the representation of unicast delegates, as each instance
refers to a single method. On the other hand, we can also create multicast delegates by
assigning LogToDatabase to the same LogDelegate instance, as follows:

Log logDelegate = LogToConsole;

logDelegate += LogToDatabase;

logDelegate("This is a simple delegate call");

The preceding code seems pretty straightforward and optimized, but under the hood, it
has a huge performance overhead. In .NET, delegates are implemented by a
MutlicastDelegate class that is optimized to run unicast delegates. It stores the reference
of the method to the target property and calls the method directly. For multicast
delegates, it uses the invocation list, which is a generic list, and holds the references to
each method that is added. With multicast delegates, each target property holds the
reference to the generic list that contains the method and executes in sequence.
However, this adds an overhead for multicast delegates and takes more time to
execute.

Summary
In this chapter, we have learned the core concepts about data structures, the types of
data structures, as well as their advantages and disadvantages, followed by the best
possible scenarios in which each can be used. We also learned about the Big O
notation, which is one of the core topics to consider when writing code and helps
developers to identify code performance. Finally, we looked into some best practices
and covered topics such as boxing and unboxing, string concatenation, exception
handling, for and foreach loops, and delegates.

In the next chapter, we will learn some guidelines and best practices that could be
helpful when designing .NET Core applications.

Designing Guidelines for .NET
Core Application Performance
Architecture and design are the core foundations for any application. Conforming to
the best practices and guidelines makes the application highly maintainable,
performant, and scalable. Applications can vary from a web-based application, Web
APIs, a server/client TCP-based messaging application, a mission-critical application,
and so on. However, all of these applications should follow certain practices that
benefit in various ways. In this chapter, we will learn certain practices that are
common in almost all of our applications.

Here are some of the principles we will learn in this chapter:

Coding principles:
Naming convention
Code comments
One class per file
One logic per method

Design principles:
KISS (Keep It Simple, Stupid)
YAGNI (You Aren't Gonna Need It)
DRY (Don't Repeat Yourself)
Separation of Concerns
SOLID principles
Caching
Data structures
Communication
Resource management
Concurrency

Coding principles
In this section, we will cover some of the basic coding principles that help in writing
quality code that improves the overall performance and scalability of the application.

Naming convention
Always use the proper naming convention in every application, starting with the
solution name, which should provide meaningful information about the project you are
working on. The project name specifies the layer or component part of the application.
Finally, classes should be nouns or noun phrases, and methods should represent the
actions.

When we create a new project in Visual Studio, the default solution name is set to
what you specify for the project name. The solution name should always be different
from the project name as one solution may contain multiple projects. The project name
should always represent the specific part of the system. For example, suppose we are
developing a messaging gateway that sends different types of messages to different
parties and contains three components, namely, listener, processor, and dispatcher; the
listener listens for incoming requests, the processor processes the incoming message,
and the dispatcher sends the message to the destination. The naming convention could
be as follows:

Solution name: MessagingGateway (or any code word)
Listener project name: ListenerApp
Processor project name: ProcessorAPI (if it's an API)
Dispatcher project name: DispatcherApp

In .NET, the naming convention we usually follow is Pascal casing for class and
method names. In Pascal casing, the first character of every word is a capital letter,
whereas the parameters and other variables follow Camel casing. Here is some sample
code showing how casing should be used in .NET.:

public class MessageDispatcher

{

 public const string SmtpAddress = "smpt.office365.com";

 public void SendEmail(string fromAddress, string toAddress,

 string subject, string body)

 {

 }

}

In the preceding code, we have a constant field, SmtpAddress, and a SendEmail method that
is cased using Pascal casing, whereas the parameters are cased using Camel casing.

The following table summarizes the naming conventions for different artifacts in
.NET:

Attribute Naming Convention Example

Class Pascal casing class PersonManager {}

Method Pascal casing void SaveRecord(Person person)

{}

Parameters/Member
variables Camel casing bool isActive;

Interface Pascal casing; starts with
letter I

IPerson

Enum Pascal casing enum Status {InProgress, New,

Completed}

Code comments
Any code that contains proper comments assists developers in many ways. It not only
reduces the time to understand the code thoroughly, but can also give leverage with
certain tools like Sandcastle or DocFx to generate complete code documentation on
the fly that can be shared with other developers across the team. Also, when talking
about APIs, Swagger is widely used and popular in the developer community.
Swagger empowers API consumers by providing complete information about the API,
available methods, parameters each method takes, and so on. Swagger also reads these
comments to provide the complete documentation and interface to test any API.

One class per file
Unlike many other languages, in .NET we are not restricted to create separate files for
each class. We can create one single .cs file and create numbers of classes inside it.
Conversely, this is a bad practice and painful when working with large applications.

One logic per method
Always write methods to do one thing at a time. Let's suppose we have a method that
reads the user ID from the database and then calls an API to retrieve the list of
documents the user has uploaded. The best approach with this scenario is to have two
separate methods, GetUserID and GetUserDocuments, to retrieve the user ID first and then the
documents, respectively:

public int GetUserId(string userName)

{

 //Get user ID from database by passing the username

}

public List<Document> GetUserDocuments(int userID)

{

 //Get list of documents by calling some API

}

The benefit of this approach is that it reduces code repetition. In the future, if we
wanted to change the logic of either method, we just have to change it in one place
rather than replicating it everywhere and increasing the chances of error.

Design principles
Developing a clean architecture adhering to the best practices adds several benefits,
and application performance is one of them. We have seen many times that the
technologies used behind an application are robust and powerful, but the application's
performance remains unsatisfactory or poor, which is usually because of bad
architecture design and investing less time on the application's design.

In this section, we will discuss a few common design principles that should be
addressed when designing and developing applications in .NET Core:

KISS (Keep It Simple, Stupid)
YAGNI (You Aren't Gonna Need It)
DRY (Don't Repeat Yourself)
Separation of Concerns
SOLID principles
Caching
Data structures
Communication
Resource management
Concurrency

KISS (Keep It Simple, Stupid)
Writing cleaner code and keeping it simple always helps developers understand and
maintain it in the long run. Adding needless complexity in the code does not only
make it less understandable, but also hard to maintain and change when required. This
is what KISS states. In a software context, KISS can be considered while designing
software architecture, using Object Oriented Principles (OOP), designing the
database, user interfaces, integration, and so on. Adding unnecessary complexity
complicates the software's design and may affect the application's maintainability and
performance.

YAGNI (You Aren't Gonna
Need It)
YAGNI is one of the core principles of XP (extreme programming). XP is a software
methodology that contains short spans of iterations to meet customer requirements and
welcomes changes when they are required or initiated by the customer. The primary
goal is meeting the customer's expectation, and keeping the quality and responsiveness
the customer needs. It involves pair programming and code reviews to keep the quality
intact and to satisfy the customer's expectations.

YAGNI is best suited for the extreme programming methodology, which helps
developers focus on the features that are part of the application's functionality or
customer's requirements. Doing something extra that is not communicated to the
customer or is not part of the iteration or requirement may end up needing a rework
and being a waste of time.

DRY (Don't Repeat Yourself)
DRY (Don't Repeat Yourself) is also one of the core principles of writing cleaner
code. It addresses the challenges developers face in big applications when they are
constantly changing or extending with respect to functionality or underlying logic. As
per the principle, it states that "Every piece of knowledge must have a single
dependable representation within the system."

When writing an application, we can use abstractions and avoid repetition of code to
avoid redundancy. This benefits in accommodating changes and lets developers focus
on one area where the change is required. If the same code is repeated in multiple
areas, changes at one place need to be done in other places as well, and this eliminates
good architecture practice, thus initiating higher risks of errors and making the
application code more buggy.

Separation of Concerns (SoC)
One of the core principles for developing clean architecture is Separation of
Concerns (SoC). This pattern states that each distinct type of work application that is
performing should be built separately as a separate component with little or no tight
coupling with other components. For example, if a program saves the user message
into the database and then a service randomly picks up the message and chooses the
winner, you can see that these are two separate operations, and this is known as
Separation of Concerns. With SoC, the code is considered a separate component and
any customization, if needed, can be done at one place. Reusability is another factor
that helps developers change code in one place so that they can use it in multiple
places. Nevertheless, testing is far easier and bugs can be secluded and fixed later in
case of predicament scenarios.

SOLID principles
SOLID is a collection of 5 principles, which are listed as follows. They are common
design principles that are highly used when developing software design:

Single Responsibility Principle (SRP)
Open Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)

Single Responsibility Principle
The Single Responsibility Principle states that the class should only have one
particular objective and that responsibility should be entirely encapsulated from the
class. If there is any change or a new objective has to be accommodated for, a new
class or interface should be created.

Applying this principle in software design makes our code maintainable and easier to
understand. Architects usually follow this principle when designing software
architecture, but, with the passage of time when many developers work and
incorporate changes into that code/class, it becomes bloated and disaffirms the single
responsibility principle, thus eventually making our code unmaintainable.

This also relates to the concepts of Cohesion and Coupling. Cohesion refers to the
measure of how strongly related the responsibilities in the class are, whereas coupling
refers to the degree to which each class relies on one another. We should always focus
on maintaining low coupling between classes and high cohesion within the class.

Here is the basic PersonManager class that contains four methods, namely GetPerson,
SavePerson, LogError, and LogInformation:

All of these methods use the database persistence manager to read/write the record into
the database. As you may have noticed, LogError and LogInformation are not highly
cohesive to the PersonManager class, and are tightly coupled with the PersonManager class. If
we wanted to reuse these methods in other classes, we have to use the PersonManager
class, and changing the logic of internal logging requires this PersonManager class to be
changed as well. Hence, PersonManager violates the single responsibility principle.

To fix this design, we can create a separate LogManager class that can be used by the
PersonManager to log information or errors when executing operations. Here is the
updated class diagram representing the associations:

Open Closed principle
As per the definition, the Open Closed principle states that software entities like
classes, methods, interfaces, and others should be closed for modification and open for
extension. This means we cannot modify the existing code and extend the functionality
by adding additional classes, interfaces, methods, and so on to address any changes.

Using this principle in any application solves various problems, which are listed as
follows:

Adding new functionality without changing existing code produces fewer errors
and does not require thorough testing
Less of a ripple effect that is usually experienced when changing existing code to
add or update functionalities
Extensions are mostly implemented using new interfaces or abstract classes
where the existing code is unnecessary and has a lesser chance to break existing
functionality

To implement the Open Closed Principle, we should use abstractions which is possible
through parameters, inheritance, and composition approaches.

Parameters
Special parameters can be set in the methods, which can be used to control the
behavior of the body written in that method. Suppose there is a LogException method that
saves the exception into the database and also sends an email. Now, whenever this
method is called, both the tasks will be performed. There is no way to stop sending an
email for a particular exception from the code. However, if it is articulated in a way
and uses some parameters to decide whether the email has to be sent out or not, it can
be controlled. Nonetheless, if the existing code doesn't support this parameter, then
customization is required, but, while designing, we can keep this approach to expose
certain parameters so that we can handle the internal behavior of the method:

public void LogException(Exception ex)

{

 SendEmail(ex);

 LogToDatabase(ex);

}

The recommended implementation is as follows:

public void LogException(Exception ex, bool sendEmail, bool logToDb)

{

 if (sendEmail)

 {

 SendEmail(ex);

 }

 if (logToDb)

 {

 LogToDatabase(ex);

 }

}

Inheritance
With the inheritence approach, we can use the Template method pattern. Using the
Template method pattern, we can create a default behavior in the root class and then
create child classes to override the default behavior and implement new functionality.

For example, here is a Logger class that logs information into the file system:

public class Logger

{

 public virtual void LogMessage(string message)

 {

 //This method logs information into file system

 LogToFileSystem(message);

 }

 private void LogtoFileSystem(string message) {

 //Log to file system

 }

}

We have one LogMessage method that logs the message into the file system by calling
the LogToFileSystem method. This method works fine until we wanted to extend the
functionality. Suppose, later on, we come up with the requirement to log this
information into the database as well. We have to change the existing LogMessage method
and write the code into the same class itself. Later on, if any other requirement comes
along, we have to add that functionality again and again and modify this class. As per
the Open Closed Principle, this is a violation.

With the Template method pattern, we can redesign this code to follow the Open
Closed Principle so that we can make it open for extension and closed for
customization.

Following the OCP, here is the new design where we have one abstract class that
contains the LogMessage abstract method, and two child classes that have their own
implementations:

With this design, we can add the nth number of extensions without changing the
existing Logger class:

public abstract class Logger

{

 public abstract void LogMessage(string message);

}

public class FileLogger : Logger

{

 public override void LogMessage(string message)

 {

 //Log to file system

 }

}

public class DatabaseLogger : Logger

{

 public override void LogMessage(string message)

 {

 //Log to database

 }

}

Composition
The third approach is composition, and this can be achieved using the Strategy pattern.
With this approach, the client code is dependent on the abstraction, and the actual
implementation is encapsulated in a separate class which is injected into the class
exposed to the client.

Let's look into the following example that implements the strategy pattern. The basic
requirement is to send messages that could be either emails or SMSes, and we need to
construct it in a way so that new message types can be added in the future without any
modification to the main class:

As per the strategy pattern, we have one MessageStrategy abstract class that exposes one
abstract method. Each type of work is encapsulated into the separate class that inherits
the MessageStrategy base abstract class.

Here is the code for the MessageStrategy abstract class:

public abstract class MessageStrategy

{

 public abstract void SendMessage(Message message);

}

We have two concrete implementations of MessageStrategy; one to send an email and
another to send an SMS, which is shown as follows:

public class EmailMessage : MessageStrategy

{

 public override void SendMessage(Message message)

 {

 //Send Email

 }

}

public class SMSMessage : MessageStrategy

{

 public override void SendMessage(Message message)

 {

 //Send SMS

 }

}

Finally, we have the MessageSender class, which will be used by the client. In this class,
the client can set the message strategy and call the SendMessage method that invokes the
particular concrete implementation type to send the message:

public class MessageSender

{

 private MessageStrategy _messageStrategy;

 public void SetMessageStrategy(MessageStrategy messageStrategy)

 {

 _messageStrategy = messageStrategy;

 }

 public void SendMessage(Message message)

 {

 _messageStrategy.SendMessage(message);

 }

}

From the Main program, we can use MessageSender, which is shown as follows:

static void Main(string[] args)

{

 MessageSender sender = new MessageSender();

 sender.SetMessageStrategy(new EmailMessage());

 sender.SendMessage(new Message { MessageID = 1, MessageTo = "jason@tfx.com",

 MessageFrom = "donotreply@tfx.com", MessageBody = "Hello readers",

 MessageSubject = "Chapter 5" });

}

Liskov principle
As per the Liskov principle, the function that uses the references of derived classes
through the base class object must comply with the behavior of the base class.

This means that the child classes should not remove the behavior of the base class
since this violates the invariants of it. Typically, the calling code should completely
rely on the methods exposed in a base class without knowing its derived
implementations.

Let's take an example where we first violate the definition of the Liskov principle and
then fix it to learn what it is particularly designed for:

The IMultiFunctionPrinter interface exposes two methods as follows:

public interface IMultiFunctionPrinter

{

 void Print();

 void Scan();

}

This is an interface that can be implemented by different kinds of printers. The
following are two kinds of printers that implement the IMultiFunctionPrinter interface,
and they are as follows:

public class OfficePrinter: IMultiFunctionPrinter

{

 //Office printer can print the page

 public void Print() { }

 //Office printer can scan the page

 public void Scan() { }

}

public class DeskjetPrinter : IMultiFunctionPrinter

{

 //Deskjet printer print the page

 public void Print() { }

 //Deskjet printer does not contain this feature

 public void Scan() => throw new NotImplementedException();

}

In the preceding implementations, we have one OfficePrinter that provides printing and
scanning functionalities, whereas the other home purpose DeskjetPrinter only provides
the printing functionality. This DeskjetPrinter actually violates the Liskov principle as it
throws the NotImplementedException when the Scan method is called.

As a remedy to the preceding problem, we can split the IMultiFunctionPrinter into two
interfaces, namely IPrinter and IScanner, whereas IMultiFunctionPrinter can also implement
both the interfaces to support both functionalities. The DeskjetPrinter only implements
the IPrinter interface as it does not support scanning:

Here is the code for the three interfaces, IPrinter, IScanner, and IMultiFunctionPrinter:

public interface IPrinter

{

 void Print();

}

public interface IScanner

{

 void Scanner();

}

public interface MultiFunctionPrinter : IPrinter, IScanner

{

}

Finally, the concrete implementation will be as follows:

public class DeskjetPrinter : IPrinter

{

 //Deskjet printer print the page

 public void Print() { }

}

public class OfficePrinter: IMultiFunctionPrinter

{

 //Office printer can print the page

 public void Print() { }

 //Office printer can scan the page

 public void Scan() { }

}

The Interface Segregation
principle
The Interface Segregation principle states that the client code should only depend on
the things the client use and should not depend on anything they do not use. This
means you cannot force client code to depend on certain methods which are not
required.

Let's take an example that first violates the Interface Segregation principle:

In the preceding diagram, we have the ILogger interface that contains two methods,
namely WriteLog and GetLogs. The ConsoleLogger class writes the message into the
application console window, whereas the DatabaseLogger class stores the message into
the database. The ConsoleLogger prints the message on the console windows and does not
persist it; it throws the NotImplementedException for the GetLogs method, and so this violates
the Interface Segregation principle.

Here is the code for the preceding problem:

public interface ILogger

{

 void WriteLog(string message);

 List<string> GetLogs();

}

/// <summary>

/// Logger that prints the information on application console window

/// </summary>

public class ConsoleLogger : ILogger

{

 public List<string> GetLogs() => throw new NotImplementedException();

 public void WriteLog(string message)

 {

 Console.WriteLine(message);

 }

}

/// <summary>

/// Logger that writes the log into database and persist them

/// </summary>

public class DatabaseLogger : ILogger

{

 public List<string> GetLogs()

 {

 //do some work to get logs stored in database, as the actual code

 //in not written so returning null

 return null;

 }

 public void WriteLog(string message)

 {

 //do some work to write log into database

 }

}

To obey the Interface Segregation Principle (ISP), we split the ILogger interface and
make it more precise and pertinent with other implementers. The ILogger interface
will only contain the WriteLog method and a new IPersistenceLogger interface is introduced
that inherits the ILogger interface and provides the GetLogs method:

Here is the modified example, which is shown as follows:

public interface ILogger

{

 void WriteLog(string message);

}

public interface PersistenceLogger: ILogger

{

 List<string> GetLogs();

}

/// <summary>

/// Logger that prints the information on application console window

/// </summary>

public class ConsoleLogger : ILogger

{

 public void WriteLog(string message)

 {

 Console.WriteLine(message);

 }

}

/// <summary>

/// Logger that writes the log into database and persist them

/// </summary>

public class DatabaseLogger : PersistenceLogger

{

 public List<string> GetLogs()

 {

 //do some work to get logs stored in database, as the actual code

 //in not written so returning null

 return null;

 }

 public void WriteLog(string message)

 {

 //do some work to write log into database

 }

}

The Dependency Inversion
principle
The Dependency Inversion principle states that high-level modules should not depend
on low-level modules and both of them should depend on abstractions.

The software application contains numerous types of dependencies. A dependency
could be a framework dependency, a third-party libraries dependency, a web service
dependency, a database dependency, a class dependency, and so on. As per the
Dependency Inversion principle, the dependencies should not be tightly coupled with
one another.

For example, in the layered architecture approach we have a presentation layer where
all the views are defined; the service layer that exposes certain methods used by the
presentation layer; the business layer that contains core business logic of the system;
and the database layer where the backend database connectors and the repository
classes are defined. Consider this an ASP.NET MVC application where the controller
invokes the service that references the business layer, where the business layer
contains the core business logic of the system, and where it uses the database layer to
perform CRUD (Create, Read, Update and Delete) operations on the database. The
dependency tree will look as follows:

As per the Dependency Inversion principle, it is not recommended to instantiate the
objects directly from each layer. This creates a tight coupling between the layers. To
break this coupling, we can implement abstraction through interfaces or abstract
classes. We may use some instantiation patterns like factory or dependency injection to
instantiate objects. Moreover, we should always use interfaces rather than classes.
Suppose in our service layer we have a reference to our business layer, and our service
contract is using EmployeeManager to perform some CRUD operations. EmployeeManager
contains the following methods:

public class EmployeeManager

{

 public List<Employee> GetEmployees(int id)

 {

 //logic to Get employees

 return null;

 }

 public void SaveEmployee(Employee emp)

 {

 //logic to Save employee

 }

 public void DeleteEmployee(int id)

 {

 //Logic to delete employee

 }

}

In the service layer, we can instantiate the business layer EmployeeManager object using the
new keyword. Adding more methods in the EmployeeManager class will directly use the
service layer based on the access modifiers being set at each method. Moreover, any
changes in the existing methods will break the service layer code. If we expose the
interface to the service layer and use some factory or Dependency Injection (DI)
patterns, it encapsulates the underlying implementation and exposes only those
methods that are needed.

The following code shows the IEmployeeManager interface being extracted from the
EmployeeManager class:

public interface IEmployeeManager

{

 void DeleteEmployee(int id);

 System.Collections.Generic.List<Employee> GetEmployees(int id);

 void SaveEmployee(Employee emp);

}

Considering the preceding example, we can inject types using dependency injection, so
whenever the service manager is invoked, the business manager instance will be
initialized.

Caching
Caching is one of the best practices that can be used to increase application
performance. It is often used with data where changes are less frequent. There are
many caching providers available that we can consider to save data and retrieve it
when needed. It is faster than the database operation. In ASP.NET Core, we can use
in-memory caching that stores the data in the memory of the server, but for a web farm
or a load balancing scenario where an application is deployed to multiple places, it is
recommended to use a distributed cache. Microsoft Azure also provides a Redis cache
which is a distributed cache that exposes an endpoint that can be used to store values
on the cloud and can be retrieved when they are needed.

To use the in-memory cache in the ASP.NET Core project, we can simply add the
memory cache in the ConfigureServices method, which is shown as follows:

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

 services.AddMemoryCache();

}

Then, we can inject IMemoryCache in our controllers or page models through dependency
injection and set or get values using the Set and Get methods.

Data structures
Choosing the right data structure plays a vital role in application performance. Before
choosing any data structure, it is highly recommended to think about whether it is an
overhead or it literally solves a particular use case. Some key factors to be considered
while choosing an appropriate data structure are as follows:

Know about the type of data you need to store
Know how the data grows and whether there is any drawback when it grows
Know if you need to access your data through an index or key/value pairs and
choose the appropriate data structure
Know if you need synchronized access and choose thread-safe collections

There are many other factors when choosing the right data structure, and they have
already been covered in Chapter 4, Data Structures and Writing Optimized Code in C#.

Communication
Nowadays, communication has become an important epitome in any application, and
the primary factor is the rapid evolution of technology. Applications such as web-
based applications, mobile applications, IoT applications, and other distributed
applications perform different types of communication over the wire. We can take an
example of an application that has a web frontend deployed on some cloud instance,
invoking some service deployed on a separate instance in the cloud and performing
some backend connectivity to the database which is hosted locally. Besides this, we
can have an IoT application that sends the room temperature by calling some service
over the internet, and many more. Certain factors that need to be considered when
designing distributed application are as follows:

Using lighter interfaces
Avoid multiple round trips to the server that adds more network latency and decreases
application performance. Using the unit of work pattern avoids sending redundant
operations to the server and performs one single operation to communicate to the
backend service. The unit of work groups all the messages as a single unit and
processes them as one unit.

Minimizing message size
Use as little data as possible to communicate to the service. For example, there is a
Person API that provides some GET, POST, PUT, and DELETE methods to perform a CRUD
operation on that backend database. To delete a person’s record, we can just pass the ID
(primary key) of the person as a parameter to the service rather than passing the whole
object as a parameter. Moreover, use objects that are less bloated with properties or
methods that offer a minimal set of artifacts. The best case is to use POCO (Plain Old
CLR object) entities that have minimal dependencies on other objects which contain
only those properties that are necessary to be sent across the wire.

Queuing communication
For larger object or complex operation, decoupling the single request/response channel
from the distributed messaging channel increases the application's performance. For
large, chunky operations, we can design and distribute communication into multiple
components. For example, there is a website that calls a service to upload an image,
and, once it is uploaded, it does some processing to extract a thumbnail and saves it in
the database. One way is to do both uploading and processing in a single call, but at
times when the user uploads a larger image or if the image processing takes a longer
time, the user may face a request timeout exception, and the request will terminate.

With the queuing architecture, we can distribute these two operations into separate
calls. The user uploads the image which is saved in the filesystem, and the image path
will be saved into storage. A service running in the background will pick up that file
and do the processing asynchronously. Meanwhile, when the backend service is
processing, the control is returned to the user, where the user can see some in-progress
notification. Finally, when the thumbnail is generated, the user will be notified:

Resource management
Every server has a limited set of resources. No matter how good the server
specification, if the application is not designed to utilize resources in an efficient
manner, this leads to performance issues. There are certain best practices that need to
be addressed to optimally use server resources when designing .NET Core
applications.

Avoiding improper use of
threads
Creating a new thread for each task without monitoring or aborting the lifecycle of the
thread is a bad practice. Threads are good to perform multitasking and to utilize
multiple resources of the server to run things in parallel. However, if the design is to
create threads for each request, this can slow down the application's performance, as
the CPU will take more time in the context of switching between the threads rather
than executing the actual job.

Whenever we use threads, we should always try to keep a shared thread pool where
any new item that needs to be executed waits in the queue if the thread is busy, and is
acquired when it is available. This way, thread management is easy and server
resources will be used efficiently.

Disposing objects in a timely
fashion
CLR (Common Language Runtime) provides automatic memory management, and
the objects instantiated with a new keyword do not require to be garbage collected
explicitly; GC (Garbage Collection) does the job. However, non-managed resources
are not automatically released by the GC and should be explicitly collected by
implementing the IDisposable interface. Such resources could be database connections,
file handlers, sockets, and so on. To learn more about disposing of unmanaged
resources in .NET Core, please refer to Chapter 6, Memory Management Techniques in
.NET Core.

Acquiring resources when they
are required
Always acquire resources only when they are required. Instantiating objects ahead of
time is not a good practice. It takes unnecessary memory and utilizes resources of the
system. Furthermore, use try, catch, and finally to block and release objects in the
finally block. This way, if any exception occurs, the objects which have been
instantiated within the method will be released.

Concurrency
In concurrent programming, many objects may access the same resource at the same
time, and keeping them thread-safe is the primary objective. In .NET Core, we can use
locks to provide synchronized access. However, there are cases where a thread has to
wait for a longer time to get access to resources, and this makes applications
unresponsive.

The best practice is to apply for synchronized access only for those specific lines of
code where the actual resource needs to be thread-safe, for example, where the locks
can be used, which are the database operations, file handling, bank account access, and
many other critical sections in the application. These need synchronized access so that
they can be handled one thread at a time.

Summary
Writing cleaner code, following the architecture and design principles, and adhering to
the best practices play a significant role in application performance. If the code if
baggy and repetitive, it can increase the chances of errors, increase complexity, and
affect performance.

In this chapter, we have learned some coding principles that make the application code
look cleaner and easier to understand. If the code is clean, it offers other developers a
way to understand it completely and helps in many other ways. Later on, we learned
some basic design principles that are considered to be the core principles when
designing applications. Principles such as KISS, YAGNI, DRY, Separation of
Concerns, and SOLID are highly essential in software design, and caching and
choosing the right data structure have a significant impact on performance and
increase performance if they are used properly. Finally, we learned some best practices
that should be considered when handling communication, resource management, and
concurrency.

The next chapter is a detailed introduction to memory management, where we will
explore some techniques of memory management in .NET Core.

Memory Management
Techniques in .NET Core
Memory management significantly affects the performance of any application. When
the application is run, .NET CLR (Common Language Runtime) allocates many
objects in memory, and they stay there until they are not needed, until new objects are
created and are allocated space, or until the GC runs (as it does occasionally) to release
unused objects and make more space available for other objects. Most of the job is
done by the GC itself, which runs intelligently and frees up space for the objects by
removing those that are not needed. However, there are certain practices that can help
any application to avoid performance issues and run smoothly.

In Chapter 2, Understanding .NET Core Internals and Measuring Performance, we
already learned about how garbage collection works and how generations are
maintained in .NET. In this chapter, we will focus on some recommended best
practices and patterns that avoid memory leakage and make the application
performant.

The following are the topics that we will learn:

Memory allocation process overview
Analysing memory through SOS debugging
Memory fragmentation
Avoiding finalizers
Best practices to dispose of objects in .NET Core

Memory allocation process
overview
Memory allocation is the process of allocating objects in memory when the application
is running. It is done by the Common Language Runtime (CLR). When the object is
initialized (using a new keyword), the GC checks whether the generation reaches the
threshold and performs garbage collection. This means that when the system memory
reaches its limit, the GC is invoked. When an application runs, the GC register itself
receives an event notification about the system memory, and when the system reaches
its particular limit, it invokes garbage collection.

On the other hand, we can also programmatically invoke the GC using the GC.Collect
method. However, as the GC is a highly fine-tuned algorithm and automatically
behaves as per memory allocation patterns, calling it explicitly can affect performance,
and so it is strongly recommended that you don't use it in production.

Analysing CLR internals
through the SOS debugger in
.NET Core
SOS is a debugging extension that is shipped with Windows and is available for Linux
as well. It helps to debug .NET Core applications by providing information about CLR
internals, especially memory allocation, the number of objects created, and other
details about the CLR. We can use the SOS extension in .NET Core to debug the
native machine code, which is specific to each platform.

To install the SOS extension for Windows, install the Windows Driver Kit (WDK) from https://developer.microsoft
.com/en-us/windows/hardware/download-kits-windows-hardware-development.

When the Windows Driver Kit is installed, we can use various commands to analyze
the CLR internals about the application and identify which objects are taking up the
most memory in the heap and optimize them accordingly.

As we know that, in .NET Core, there is no executable file generated, we can use
dotnet cli commands to execute the .NET Core application. The commands to run the
.NET Core application are as follows:

dotnet run

dotnet applicationpath/applicationname.dll

We can run either of the preceding commands to run the .NET Core application. In the
case of the ASP.NET Core application, we can go to the root of the application folder,
where Views, wwwroot, Models, Controllers and other files reside, and run the following
command:

https://developer.microsoft.com/en-us/windows/hardware/download-kits-windows-hardware-development

On the other hand, debugging tools usually require the .exe file or the process ID to
dump information related to the CLR internals. To run the SOS debugger, we can go to
the path where the Windows Driver Kit is installed (the directory path will be
{driveletter}:Program Files (x86)Windows Kits10Debuggersx64) and run the following command:

windbg dotnet {application path}

Here is a screenshot that shows you how to run the ASP.NET Core application using
the windbg command:

Once you run the preceding command, it will open up the Windbg window and the
debugger, as follows:

You can stop the debugger by clicking Debug | Break and running the SOS command to
load the information about .NET Core CLR.

Execute the following command from the Windbg window and hit Enter:

.loadby sos coreclr

The following screenshot is of the interface from which you can type and run the
preceding command:

Finally, we can run the !DumpHeap command to see the complete statistical details of the
objects heap:

In the preceding screenshot, the first three columns as shown in the following
screenshot, represent the Address, Method table and Size of each method:

Using the preceding information, it provides the statistics that classify the objects
stored on the heap by their type. MT is the method table of that type, Count is the total
number of instances of that type, TotalSize is the total memory size occupied by all the
instances of that type, and Classname represents the actual type that takes up that space
on the heap.

There are a few more commands that we can use to get specific details, listed as
follows:

Switch Command Description

Statistics !DumpHeap -stat Shows only statistical details

!DumpHeap -type Shows the statistics for a particular type

Type TypeName stored on the heap

Finalization
queue

!FinalizationQueue Show details about the finalizers

This tool helps developers to investigate how objects are allocated on the heap. In a
practical scenario, we can run our application on a test or staging server by running
this tool in the background and examining the detailed statistics about the objects
stored on the heap for a particular point of time.

Memory fragmentation
Memory fragmentation is one of the primary causes of performance issues in .NET
applications. When the object is instantiated, it occupies space in the memory, and
when it is not needed, it is garbage collected, and that allocated memory block
becomes available. This occurs when the object is allocated a larger space with respect
to the size available in that memory segment/block and waits until space becomes
available. Memory fragmentation is a problem that occurs when most of the memory is
allocated in a larger number of non-contiguous blocks. When a larger size of object
stores or occupies the larger memory block and the memory only contains smaller
chunks of free blocks that are available, this causes fragmentation, and the system fails
to allocate that object in memory.

.NET maintains two types of heap—namely the small object heap (SOH) and large
object heap (LOH). Objects that are greater than 85,000 bytes are stored in LOH. The
key difference between SOH and LOH is that in LOH there is no compaction being
done by the GC. Compaction is the process that is done at the time of garbage
collection, where objects stored in the SOH are moved to eliminate the smaller chunks
of free space available and increase the total space available as one form of large
memory chunk that can be used by other objects, which reduces fragmentation.
However, in LOH, there is no compaction being done by the GC implicitly. Objects
that are large in size are stored in LOH and create fragmentation issues. Moreover, if
we compare LOH with SOH, the compaction cost for LOH is moderately high and
involves significant overhead, where the GC needs twice as much memory space to
move objects for defragmentation. This is another reason why LOH is not
defragmented implicitly by the GC.

The following is a representation of memory fragmentation, where the white blocks
represent the unallocated memory space, and are followed by an allocated block:

Suppose an object that has a size of 1.5 MB wants to be allocated some memory. It
will not find any free space available, even though the total amount of memory
available is 1.8 MB. The reason for this is memory fragmentation:

On the other hand, if the memory is defragmented, the object can easily use the space
that is available and will be allocated:

In .NET Core, we can perform compaction in LOH explicitly using GCSettings, as
follows:

GCSettings.LargeObjectHeapCompactionMode = GCLargeObjectHeapCompactionMode.CompactOnce;

GC.Collect();

Avoiding finalizers
Using finalizers is not a good practice to use in .NET Core applications. Objects that
use finalizers stay in memory longer and ultimately affect the application's
performance.

Objects that are not required by the application at a particular point in time stay in the
memory so that their Finalizer method can be called. For example, if the object is
considered dead by the GC in generation 0, it will always survive in generation 1.

In .NET Core, CLR maintains a separate thread to run the Finalizer method. All the
objects that contain the Finalizer method are placed into the finalization queue. Any
object that is no longer required by the application is placed in the F-Reachable queue,
which is then executed by the dedicated finalizer thread.

The following diagram shows an object1 object that contains a Finalizer method. The
Finalizer method is placed in the finalization queue and the object occupies the memory
space in the Gen0 (generation 0) heap:

When the object is no longer required, it will be moved from Gen0 (generation 0) to
Gen1 (generation 1) and from the Finalizer Queue to the F-Reachable Queue:

Once the finalizer thread runs the method in the F-Reachable Queue, it will be
removed from the memory by the GC.

In .NET Core, the finalizer can be defined as follows:

public class FileLogger

{

 //Finalizer implementation

 ~FileLogger()

 {

 //dispose objects

 }

}

Usually, this method is used to dispose of unmanaged objects and contains some code.
However, a code can contain bugs that affect performance. For example, we have three
objects that are queued in a finalization queue, which then waits for the first object to
be released by the finalizer thread so they can be processed. Now, suppose that a bug
in the first Finalizer method causes a problem and delays the finalizer thread in
returning and processing the rest of the methods. After some time, more objects will
come into the finalization queue and wait for the finalizer thread to process, impacting
the applications, performance.

The best practice to dispose of objects is to use the IDisposable interface rather than
implementing the Finalizer method. If you are using the Finalizer method for some
reason, it is always good to implement the IDisposable interface as well and suppress
finalization by calling the GC.SuppressFinalize method.

Best practices for disposing of
objects in .NET Core
We have learned in the previous section that object disposal in .NET Core is
automatically done by the GC. Nevertheless, disposing of objects in your code is
always a good practice, and is highly recommended when you are working with
unmanaged objects. In this section, we will explore some best practices that can be
used to dispose of objects while writing code in .NET Core.

Introduction to the IDisposable
interface
IDisposable is a simple interface that contains one Dispose method, takes no parameter,
and returns void:

public interface IDisposable

{

 void Dispose();

}

It is used to release unmanaged resources. So if any class implements the IDisposable
interface, it means that the class contains unmanaged resources and these have to be
released by calling the Dispose method of the class.

What are unmanaged
resources?
Any resource that is outside of your application boundary is considered an unmanaged
resource. It could be a database, filesystem, web service, or a similar resource. To
access the database, we use the managed .NET API to open or close the connection
and execute various commands. However, the actual connection to the database is not
managed. The same is true for the filesystem and web services where we use managed
.NET APIs to interact with them, but they use unmanaged resources in the backend
that are not managed. The IDisposable interface is the best fit for all such scenarios.

Using IDisposable
Here is a simple DataManager class that uses a System.Data.SQL API to perform database
operations on an SQL server database:

public class DataManager : IDisposable

{

 private SqlConnection _connection;

 //Returns the list of users from database

 public DataTable GetUsers()

 {

 //Invoke OpenConnection to instantiate the _connection object

 OpenConnection();

 //Executing command in a using block to dispose command object

 using(var command =new SqlCommand())

 {

 command.Connection = _connection;

 command.CommandText = "Select * from Users";

 //Executing reader in a using block to dispose reader object

 using (var reader = command.ExecuteReader())

 {

 var dt = new DataTable();

 dt.Load(reader);

 return dt;

 }

 }

 }

 private void OpenConnection()

 {

 if (_connection == null)

 {

 _connection = new SqlConnection(@"Integrated Security=SSPI;

 Persist Security Info=False;Initial Catalog=SampleDB;

 Data Source=.sqlexpress");

 _connection.Open();

 }

 }

 //Disposing _connection object

 public void Dispose() {

 Console.WriteLine("Disposing object");

 _connection.Close();

 _connection.Dispose();

 }

}

In the preceding code, we have implemented the IDisposable interface which, in turn,
implemented the Dispose method to clean up the SQL connection object. We have also
called the connection's Dispose method, which will chain up the process in the pipeline
and close the underlying objects.

From the calling program, we can use the using block to instantiate the DatabaseManager
object that invokes the Dispose method after calling the GetUsers method:

static void Main(string[] args)

{

 using(DataManager manager=new DataManager())

 {

 manager.GetUsers();

 }

}

The using block is a C# construct that is rendered by the compiler in a try finally block
and calls the Dispose method in the finally block. So this means that when you are using
a using block, we don't have to call the Dispose method explicitly. Alternatively, the
preceding code can be written in the following way as well, and this particular code
format is internally managed by the using block:

static void Main(string[] args)

{

 DataManager _manager;

 try

 {

 _manager = new DataManager();

 }

 finally

 {

 _manager.Dispose();

 }

}

When to implement the
IDisposable interface
We already know that the IDisposable interface should be used whenever we need to
release unmanaged resources. However, there is a standard rule that should be
considered when dealing with the disposal of objects. The rule states that if the
instance within the class implements the IDisposable interface, we should implement
IDisposable on the consuming class as well. For example, the preceding class
DatabaseManager class uses SqlConnection, where SqlConnection implements the IDisposable
interface internally. To address this rule, we will implement the IDisposable interface
and invoke the instance's Dispose method.

Here is a better example that invokes the protected Dispose method from the
DatabaseManager Dispose method and passes a Boolean value indicating that the object is
being disposed of. Ultimately, we will call the GC.SuppressFinalize method that tells the
GC that the object is already cleaned up, preventing a redundant garbage collection
from being called:

public void Dispose() {

 Console.WriteLine("Disposing object");

 Dispose(true);

 GC.SuppressFinalize(this);

}

protected virtual void Dispose(Boolean disposing)

{

 if (disposing)

 {

 if (_connection != null)

 {

 _connection.Close();

 _connection.Dispose();

 //set _connection to null, so next time it won't hit this block

 _connection = null;

 }

 }

}

}

The reason we have kept the parameterized Dispose method protected and virtual is so
that the child classes if derived from the DatabaseManager class can override the Dispose
method and clean up their own resources. This ensures that each class in the object tree
will clean up its resources. Child classes dispose of their resources and call Dispose on
the base class, and so on.

Finalizer and Dispose
The Finalizer method is called by the GC, whereas the Dispose method has to be called
by the developer explicitly in the program. The GC doesn't know if the class contains a
Dispose method, and it needs to be called when the object is disposing to clean up the
unmanaged resources. In this scenario, where we need to strictly clean up the resources
rather than relying on the caller to call the Dispose method of the object, we should
implement the Finalizer method.

The following is a modified example of the DatabaseManager class that implements the
 Finalizer method:

public class DataManager : IDisposable

{

 private SqlConnection _connection;

 //Returns the list of users from database

 public DataTable GetUsers()

 {

 //Invoke OpenConnection to instantiate the _connection object

 OpenConnection();

 //Executing command in a using block to dispose command object

 using(var command =new SqlCommand())

 {

 command.Connection = _connection;

 command.CommandText = "Select * from Users";

 //Executing reader in a using block to dispose reader object

 using (var reader = command.ExecuteReader())

 {

 var dt = new DataTable();

 dt.Load(reader);

 return dt;

 }

 }

 }

 private void OpenConnection()

 {

 if (_conn == null)

 {

 _connection = new SqlConnection(@"Integrated Security=SSPI;

 Persist Security Info=False;Initial Catalog=SampleDB;

 Data Source=.sqlexpress");

 _connection.Open();

 }

 }

 //Disposing _connection object

 public void Dispose() {

 Console.WriteLine("Disposing object");

 Dispose(true);

 GC.SuppressFinalize(this);

 }

 private void Dispose(Boolean disposing)

 {

 if(disposing) {

 //clean up any managed resources, if called from the

 //finalizer, all the managed resources will already

 //be collected by the GC

 }

 if (_connection != null)

 {

 _connection.Close();

 _connection.Dispose();

 //set _connection to null, so next time it won't hit this block

 _connection = null;

 }

 }

 //Implementing Finalizer

 ~DataManager(){

 Dispose(false);

 }

}

In the preceding code snippet, we have modified the Dispose method and added the
finalizer using a destructor syntax, ~DataManager. When the GC runs, the finalizer is
invoked and calls the Dispose method by passing a false flag as a Boolean parameter. In
the Dispose method, we will clean up the connection object. During the finalization stage,
the managed resources will already be cleaned up by the GC, so the Dispose method will
now only clean up the unmanaged resources from the finalizer. However, a developer
can explicitly dispose of objects by calling the Dispose method and passing a true flag as
a Boolean parameter to clean up managed resources.

Summary
This chapter was focused on memory management. We learned some best practices
and the actual underlying process of how memory management is done in .NET. We
explored the debugging tool, which can be used by developers to investigate an
object's memory allocation on the heap. We also learned about memory fragmentation,
finalizers, and how to implement a dispose pattern to clean up resources by
implementing the IDisposable interface.

In the next chapter, we will be creating an application following a microservices
architecture. A microservice architecture is a highly performant and scalable
architecture that helps the application to scale out easily. The following chapter
provides you with a complete understanding of how an application can be developed
following the best practices and principles.

Securing and Implementing
Resilience in .NET Core
Applications
Security and resilience are two important aspects that should be considered when
developing applications of any scale. Security protects an application's secrets,
performs authentication, and provides authorized access to secure content, whereas
resiliency embraces the application if it fails so that it can degrade gracefully.
Resiliency makes an application highly available and allows the application to function
properly at the time when an error occurs or when it is in a faulty state. It is widely
used with the microservices architecture, where an application is decomposed into
multiple services and each service communicates with other services to perform an
operation.

There are various techniques and libraries available in .NET Core that we can use to
implement security and resiliency. In ASP.NET Core applications, we can use Identity
to implement user authentication/authorization, a popular Polly framework to
implement patterns such as circuit breaker, the retry pattern, and others.

In this chapter, we will look at the following topics:

Introduction to resilient applications
Implementing health checks to monitor application performance
Implementing the retry pattern in ASP.NET Core applications to retry operations
on transient faults
Implementing circuit breaker patterns to prevent calls that are likely to fail
Protecting ASP.NET Core applications and enabling authentication and
authorization using the Identity framework
Using safe storage to store application secrets

Introduction to resilient
applications
Developing applications with resiliency as an important factor always makes your
customers happy. Today, applications are distributed by nature and involve lots of
communication over the wire. Problems arise when the service is down or not
responding on time due to network failure, which eventually leads to a delay before the
client operation is terminated. The purpose of resiliency is to make your application
recover from a failure and make it responsive again.

Complexity increases when you call one service and that service calls another service,
and so on. In a long chain of operations, considering resiliency is important. This is the
reason it is one of the most widely adopted principles in microservice architecture.

Resilient policies
Resilient policies are classified into two categories:

Reactive policies
Proactive policies

In this chapter, we will implement both reactive and proactive policies using the Polly
framework, which can be used with .NET Core applications.

Reactive policies
According to the reactive policy, we should instantly retry the service request if the
request fails on its first attempt. To implement the reactive policy, we can use the
following patterns:

Retry: Retries immediately when the request fails
Circuit breaker: Stops all requests to a service in a faulted state
Fallback: Returns a default response if the service is in a faulted state

Implementing the retry pattern
The retry pattern is used to retry the faulted service a number of times in order to get a
response. It is widely used in scenarios involving intercommunication between
services, where one service is dependent on another service to perform a particular
operation. Transient faults occur when services are hosted separately and communicate
over the wire, most likely over a HTTP protocol.

The following diagram represents two services: a user registration service that registers
and save the user's record in a database, and an email service to send a confirmation
email to the user so that they can activate their account. Suppose an email service does
not respond. This will return some sort of error, and if a retry pattern is implemented, it
will retry the request the number of times it has been implemented to do so, and will
call the email service if it fails:

The User Registration Service and the Email Service are ASP.NET Core Web API
projects where user registration implements the retry pattern. We will use the Polly
framework by adding it as a NuGet package in the user registration service. To add
Polly, we can execute the following command from the NuGet package manager
console window in Visual Studio:

Install-Package Polly

The Polly framework is based on policies. You can define policies that contain specific
configurations related to the pattern you are implementing and then invoke that policy
by calling its ExecuteAsync method.

Here is the UserController which contains a POST method that implements a retry
pattern to invoke the email service:

[Route("api/[controller]")]

public class UserController : Controller

{

 HttpClient _client;

 public UserController(HttpClient client)

 {

 _client = client;

 }

 // POST api/values

 [HttpPost]

 public void Post([FromBody]User user)

 {

 //Email service URL

 string emailService = "http://localhost:80/api/Email";

 //Serialize user object into JSON string

 HttpContent content = new StringContent(JsonConvert.SerializeObject(user));

 //Setting Content-Type to application/json

 _client.DefaultRequestHeaders

 .Accept

 .Add(new MediaTypeWithQualityHeaderValue("application/json"));

 int maxRetries = 3;

 //Define Retry policy and set max retries limit and duration between each retry to 3 seconds

 var retryPolicy = Policy.Handle<HttpRequestException>().WaitAndRetryAsync(

 maxRetries, sleepDuration=> TimeSpan.FromSeconds(3));

 //Call service and wrap HttpClient PostAsync into retry policy

 retryPolicy.ExecuteAsync(async () => {

 var response = _client.PostAsync(emailService, content).Result;

 response.EnsureSuccessStatusCode();

 });

 }

}

In the preceding code, we have used the HttpClient class to make a RESTful request to
the email service API. The HTTP POST method receives a user object that contains the
following five properties:

public class User

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string EmailAddress { get; set; }

 public string UserName { get; set; }

 public string Password { get; set; }

}

Since the request will be sent in JSON format, we have to set the Content-Type header
value to application/json. Then, we have to define the retry policy to wait and retry the
operation every three seconds, with the maximum amount of retries being three.

Finally, we call the ExecuteAsync method to invoke the client.PostAsync method so that it
calls the email service.

After running the preceding example, if the email service is down or throws an
exception, it will be retried three times to try and get the required response.

Implementing circuit breaker
Implementing the retry pattern is a good practice when calling services that are
communicating over a network. However, the calling mechanism itself takes resources
and bandwidth to execute the operation and delay the response. If the services are
already in a faulted state, it is not always a good practice to retry it multiple times for
every request. This is where circuit breaker plays its role.

Circuit breaker works in three states, as shown in the following diagram:

Initially, the circuit breaker is in a Closed State, which means the communication
between services are working and the target remote service is responding. If the target
remote service fails, the circuit breaker changes to Open State. When the state
becomes open, then all subsequent requests cannot invoke the target remote service for
a particular, specified time, and directly returns the response to the caller. Once the
time elapses, the circuit turns to Half-open State and tries to invoke the target remote
service to get the response. If the response is received successfully, the circuit breaker
changes back to Closed State, or if it fails, the state changes back to closed and
remains closed for the time specified in the configuration.

To implement the circuit breaker pattern, we will use the same Polly framework,
which you can add from the NuGet package. We can add the circuit breaker policy as
follows:

var circuitBreakerPolicy = Policy.HandleResult<HttpResponseMessage>(result => !result.IsSuccessStatusCode)

 .CircuitBreakerAsync(3, TimeSpan.FromSeconds(10), OnBreak, OnReset, OnHalfOpen);

Add the preceding circuit breaker policy inside the ConfigureServices method in
the Startup class. The reason for defining it in the Startup class is to inject the circuit
breaker object as a singleton object through Dependency Injection (DI). Therefore,
all requests will share the same instance and the state will be maintained properly.

While defining the circuit breaker policy, we set the number of events allowed before
breaking the circuit as three, which checks how many times the request has failed and
breaks the circuit once it reaches the threshold value of three. It will keep the circuit
break Open for 10 seconds and then change the state to Half-Open when the first
request comes in after the time has elapsed.

Finally, if the remote service is still failing ,the circuit state changes to the Open state
again; otherwise, it is set as Close. We have also defined OnBreak, OnReset, and OnHalfOpen
delegates that are invoked when the circuit state changes. We can log this information
somewhere in the database or file system if required. Add these delegate methods in
the Startup class:

private void OnBreak(DelegateResult<HttpResponseMessage> responseMessage, TimeSpan timeSpan)

{

 //Log to file system

}

private void OnReset()

{

 //log to file system

}

private void OnHalfOpen()

{

 // log to file system

}

Now, we will add the circuitBreakerPolicy and HttpClient objects using DI in the
ConfigureServices method in the Startup class:

services.AddSingleton<HttpClient>();

 services.AddSingleton<CircuitBreakerPolicy<HttpResponseMessage>>(circuitBreakerPolgicy);

Here is our UserController that takes the HttpClient and CircuitBreakerPolicy object in the
parameterized constructor:

public class UserController : Controller

{

 HttpClient _client;

 CircuitBreakerPolicy<HttpResponseMessage> _circuitBreakerPolicy;

 public UserController(HttpClient client,

 CircuitBreakerPolicy<HttpResponseMessage> circuitBreakerPolicy)

 {

 _client = client;

 _circuitBreakerPolicy = circuitBreakerPolicy;

 }

}

And this is the HTTP POST method that uses the circuit breaker policy and invokes the

email service:

// POST api/values

[HttpPost]

public async Task<IActionResult> Post([FromBody]User user)

{

 //Email service URL

 string emailService = "http://localhost:80/api/Email";

 //Serialize user object into JSON string

 HttpContent content = new StringContent(JsonConvert.SerializeObject(user));

 //Setting Content-Type to application/json

 _client.DefaultRequestHeaders

 .Accept

 .Add(new MediaTypeWithQualityHeaderValue("application/json"));

 //Execute operation using circuit breaker

 HttpResponseMessage response = await _circuitBreakerPolicy.ExecuteAsync(() =>

 _client.PostAsync(emailService, content));

 //Check if response status code is success

 if (response.IsSuccessStatusCode)

 {

 var result = response.Content.ReadAsStringAsync();

 return Ok(result);

 }

 //If the response status is not success, it returns the actual state

 //followed with the response content

 return StatusCode((int)response.StatusCode, response.Content.ReadAsStringAsync());

}

This is the classic circuit breaker example. Polly also comes with an advanced circuit
breaker, which is more useful in cases where you have to break the circuit based on the
percentage of failed requests in a particular amount of time. When working with big
applications or applications that involve lots of transactions within a minute, there's a
chance that 2% to 5% of transactions will fail due to other non-transient failure issues,
so we don't want the circuit to break. In this case, we can implement the advanced
circuit breaker pattern and define the policy in our ConfigureServices method, which is
shown as follows:

public void ConfigureServices(IServiceCollection services)

{

 var circuitBreakerPolicy = Policy.HandleResult<HttpResponseMessage>(

 result => !result.IsSuccessStatusCode)

 .AdvancedCircuitBreaker(0.1, TimeSpan.FromSeconds(60),5, TimeSpan.FromSeconds(10),

 OnBreak, OnReset, OnHalfOpen);

 services.AddSingleton<HttpClient>();

 services.AddSingleton<CircuitBreakerPolicy<HttpResponseMessage>>(circuitBreakerPolicy);

}

The first parameter in the AdvancedCircuitBreakerAsync method contains a value of 0.1,
which is the percentage of requests that have failed in the time frame, which is 60
seconds, as specified in the second parameter. The third parameter which, defines the
value of 5, is the minimum throughput of requests being served in that particular time,

as specified in the second parameter which is 60 seconds. Finally, the fourth parameter
defines the amount of time the circuit remains open if any request fails and tries to
serve the request again once the time has elapsed. The Other parameters are just
delegate methods that are called when each state is changed, which is the same as in
the previous classic circuit breaker example.

Wrapping the circuit breaker
with retry
So far, we have learned how circuit breaker and retry patterns can be used and
implemented using the Polly framework. The retry pattern is used to retry the request
if it fails for a specified amount of time, where circuit breaker keeps the state of the
circuit and, based on the threshold of the requests being failed, makes the circuit open
and stops calling the remote service for some time, as specified in the configuration to
save network bandwidth.

With the Polly framework, we can use the retry and circuit breaker patterns in
conjunction and wrap the circuit breaker with the retry pattern to open the circuit if the
retry pattern reaches the count of the failed request threshold limit.

In this section, we will develop a custom HttpClient class that provides methods such as
GET, POST, PUT, and DELETE, and use retry and circuit breaker policies to make it resilient.

Create a new IResilientHttpClient interface and add four methods for HTTP GET, POST, PUT,
and DELETE:

public interface IResilientHttpClient

{

 HttpResponseMessage Get(string uri);

 HttpResponseMessage Post<T>(string uri, T item);

 HttpResponseMessage Delete(string uri);

 HttpResponseMessage Put<T>(string uri, T item);

}

Now, create a new class called ResilientHttpClient, which implements the
IResilientHttpClient interface. We will add a parameterized constructor to inject the
circuit breaker policy and a HttpClient object, which will be used to make HTTP GET,
POST, PUT, and DELETE requests. Here is the constructor implementation of
the ResilientHttpClient class:

public class ResilientHttpClient : IResilientHttpClient

{

 static CircuitBreakerPolicy<HttpResponseMessage> _circuitBreakerPolicy;

 static Policy<HttpResponseMessage> _retryPolicy;

 HttpClient _client;

 public ResilientHttpClient(HttpClient client,

 CircuitBreakerPolicy<HttpResponseMessage> circuitBreakerPolicy)

 {

 _client = client;

 _client.DefaultRequestHeaders.Accept.Clear();

 _client.DefaultRequestHeaders.Accept.Add(

 new MediaTypeWithQualityHeaderValue("application/json"));

 //circuit breaker policy injected as defined in the Startup class

 _circuitBreakerPolicy = circuitBreakerPolicy;

 //Defining retry policy

 _retryPolicy = Policy.HandleResult<HttpResponseMessage>(x =>

 {

 var result = !x.IsSuccessStatusCode;

 return result;

 })

 //Retry 3 times and for each retry wait for 3 seconds

 .WaitAndRetry(3, sleepDuration => TimeSpan.FromSeconds(3));

 }

}

In the preceding code, we have defined the CircuitBreakerPolicy<HttpResponseMessage> and
HttpClient objects, which are injected through DI. We have defined the retry policy and
set the retry threshold to three times, where each retry will wait for three seconds
before making a call to the service.

Next, we will create the ExecuteWithRetryandCircuitBreaker method, which takes a URI and
a delegate function that will be executed within the retry and circuit breaker policies.
Here is the code snippet of the ExecuteWithRetryandCircuitBreaker method:

//Wrap function body in Retry and Circuit breaker policies

public HttpResponseMessage ExecuteWithRetryandCircuitBreaker(string uri, Func<HttpResponseMessage> func)

{

 var res = _retryPolicy.Wrap(_circuitBreakerPolicy).Execute(() => func());

 return res;

}

We will call this method from our GET, POST, PUT, and DELETE implementation
and define the code that will be executed within the retry and circuit breaker policies.

Here is the implementation for the GET, POST, PUT, and DELETE methods,
respectively:

public HttpResponseMessage Get(string uri)

{

 //Invoke ExecuteWithRetryandCircuitBreaker method that wraps the code

 //with retry and circuit breaker policies

 return ExecuteWithRetryandCircuitBreaker(uri, () =>

 {

 try

 {

 var requestMessage = new HttpRequestMessage(HttpMethod.Get, uri);

 var response = _client.SendAsync(requestMessage).Result;

 return response;

 }

 catch(Exception ex)

 {

 //Handle exception and return InternalServerError as response code

 HttpResponseMessage res = new HttpResponseMessage();

 res.StatusCode = HttpStatusCode.InternalServerError;

 return res;

 }

 });

}

//To do HTTP POST request

public HttpResponseMessage Post<T>(string uri, T item)

{

 //Invoke ExecuteWithRetryandCircuitBreaker method that wraps the code

 //with retry and circuit breaker policies

 return ExecuteWithRetryandCircuitBreaker(uri, () =>

 {

 try

 {

 var requestMessage = new HttpRequestMessage(HttpMethod.Post, uri);

 requestMessage.Content = new StringContent(JsonConvert.SerializeObject(item),

 System.Text.Encoding.UTF8, "application/json");

 var response = _client.SendAsync(requestMessage).Result;

 return response;

 }catch (Exception ex)

 {

 //Handle exception and return InternalServerError as response code

 HttpResponseMessage res = new HttpResponseMessage();

 res.StatusCode = HttpStatusCode.InternalServerError;

 return res;

 }

 });

}

//To do HTTP PUT request

public HttpResponseMessage Put<T>(string uri, T item)

{

 //Invoke ExecuteWithRetryandCircuitBreaker method that wraps

 //the code with retry and circuit breaker policies

 return ExecuteWithRetryandCircuitBreaker(uri, () =>

 {

 try

 {

 var requestMessage = new HttpRequestMessage(HttpMethod.Put, uri);

 requestMessage.Content = new StringContent(JsonConvert.SerializeObject(item),

 System.Text.Encoding.UTF8, "application/json");

 var response = _client.SendAsync(requestMessage).Result;

 return response;

 }

 catch (Exception ex)

 {

 //Handle exception and return InternalServerError as response code

 HttpResponseMessage res = new HttpResponseMessage();

 res.StatusCode = HttpStatusCode.InternalServerError;

 return res;

 }

 });

}

//To do HTTP DELETE request

public HttpResponseMessage Delete(string uri)

{

 //Invoke ExecuteWithRetryandCircuitBreaker method that wraps the code

 //with retry and circuit breaker policies

 return ExecuteWithRetryandCircuitBreaker(uri, () =>

 {

 try

 {

 var requestMessage = new HttpRequestMessage(HttpMethod.Delete, uri);

 var response = _client.SendAsync(requestMessage).Result;

 return response;

 }

 catch (Exception ex)

 {

 //Handle exception and return InternalServerError as response code

 HttpResponseMessage res = new HttpResponseMessage();

 res.StatusCode = HttpStatusCode.InternalServerError;

 return res;

 }

 });

}

Finally, in our startup class, we will add the dependencies as follows:

public void ConfigureServices(IServiceCollection services)

{

 var circuitBreakerPolicy = Policy.HandleResult<HttpResponseMessage>(x=> {

 var result = !x.IsSuccessStatusCode;

 return result;

 })

 .CircuitBreaker(3, TimeSpan.FromSeconds(60), OnBreak, OnReset, OnHalfOpen);

 services.AddSingleton<HttpClient>();

 services.AddSingleton<CircuitBreakerPolicy<HttpResponseMessage>>(circuitBreakerPolicy);

 services.AddSingleton<IResilientHttpClient, ResilientHttpClient>();

 services.AddMvc();

 services.AddSwaggerGen(c =>

 {

 c.SwaggerDoc("v1", new Info { Title = "User Service", Version = "v1" });

 });

 }

In our UserController class, we can inject our custom ResilientHttpClient object through DI
and modify the POST method, which is shown as follows:

[Route("api/[controller]")]

public class UserController : Controller

{

 IResilientHttpClient _resilientClient;

 HttpClient _client;

 CircuitBreakerPolicy<HttpResponseMessage> _circuitBreakerPolicy;

 public UserController(HttpClient client, IResilientHttpClient resilientClient)

 {

 _client = client;

 _resilientClient = resilientClient;

 }

 // POST api/values

 [HttpPost]

 public async Task<IActionResult> Post([FromBody]User user)

 {

 //Email service URL

 string emailService = "http://localhost:80/api/Email";

 var response = _resilientClient.Post(emailService, user);

 if (response.IsSuccessStatusCode)

 {

 var result = response.Content.ReadAsStringAsync();

 return Ok(result);

 }

 return StatusCode((int)response.StatusCode, response.Content.ReadAsStringAsync());

 }

}

With this implementation, the circuit will be initially closed when the application
starts. When the request is made to the EmailService, if the service does not respond, it
will try to call the service three times, waiting for three seconds on each request. If the
service doesn't respond, the circuit will become open and for all subsequent requests,
will stop calling the email service and will return the exception to the user for 60
seconds, as specified in the circuit breaker policy. After 60 seconds, the next request
will be made to the EmailService and the circuit breaker state will be changed to Half-
open. If it responds, the circuit state becomes closed again; otherwise, it remains in an
open state for the next 60 seconds.

Fallback policy with circuit
breaker and retry
Polly also provides a fallback policy that returns some default responses if the service
is failing. It can be used in conjunction with both the retry and circuit breaker policies.
The basic idea behind fallback is to send a default response to the consumer rather than
returning the actual error in the response. The response should give some meaningful
information to the user that is specific to the application's nature. This is very
beneficial when your services are used by external consumers of applications.

We can modify the preceding example and add fallback policies for both the retry and
circuit breaker exceptions. In the ResilientHttpClient class, we will add these two
variables:

static FallbackPolicy<HttpResponseMessage> _fallbackPolicy;

static FallbackPolicy<HttpResponseMessage> _fallbackCircuitBreakerPolicy;

Next, we add the circuit breaker policy to handle the circuit breaker exception and
return the HttpResponseMessage with our custom content message. Add the following code
in the parameterized constructor of the ResilientHttpClient class:

_fallbackCircuitBreakerPolicy = Policy<HttpResponseMessage>

.Handle<BrokenCircuitException>()

.Fallback(new HttpResponseMessage(HttpStatusCode.OK)

 {

 Content = new StringContent("Please try again later[Circuit breaker is Open]")

 }

);

Then, we will add another fallback policy, which will wrap the circuit breaker to
handle any other exceptions that are not circuit breaker exceptions:

_fallbackPolicy = Policy.HandleResult<HttpResponseMessage>(r => r.StatusCode == HttpStatusCode.InternalServerError)

.Fallback(new HttpResponseMessage(HttpStatusCode.OK) {

 Content = new StringContent("Some error occured")

});

Finally, we will modify the ExecuteWithRetryandCircuitBreaker method and wrap both the
retry and circuit breaker policy inside the fallback policies, which returns the general
message with the 200 status code to the user:

public HttpResponseMessage ExecuteWithRetryandCircuitBreaker(string uri, Func<HttpResponseMessage> func)

{

 PolicyWrap<HttpResponseMessage> resiliencePolicyWrap =

 Policy.Wrap(_retryPolicy, _circuitBreakerPolicy);

 PolicyWrap<HttpResponseMessage> fallbackPolicyWrap =

 _fallbackPolicy.Wrap(_fallbackCircuitBreakerPolicy.Wrap(resiliencePolicyWrap));

 var res = fallbackPolicyWrap.Execute(() => func());

 return res;

}

With this implementation, the user will not get any errors in response. The content
contains the actual error, which is shown in the following snapshot, taken from
Fiddler:

Proactive policies
According to the proactive policy, we should proactively respond to a request if it is
leading towards a failure. We can use techniques such as timeout, caching, and health
checks to proactively monitor application performance, and use them to proactively
respond in the event of failure.

Timeout: If a request takes more than the usual time, it ends the request
Caching: Caches previous responses and uses them for future requests
Health checks: Monitor the application's performance and invokes alerts in the
event of failure

Implementing timeout
Timeout is a proactive policy, which is applicable in scenarios where the target service
takes a long time to respond, and rather than letting the client wait for a response, we
return a general message or response. We can use the same Polly framework to define
the timeout policy, and it can also be used with the combination of retry and circuit
breaker patterns we learned earlier:

In the preceding diagram, the user registration service is calling the email service to
send emails. Now, if the email service does not respond in a particular amount of time,
as specified in the timeout policy, the timeout exception will be raised.

To add a timeout policy, declare a _timeoutPolicy variable in the ResilientHttpClient class:

static TimeoutPolicy<HttpResponseMessage> _timeoutPolicy;

Then, add the following code to initialize the timeout policy:

_timeoutPolicy = Policy.Timeout<HttpResponseMessage>(1);

Finally, we will wrap the timeout policy and add it in resiliencyPolicyWrap. Here is the
modified code of the ExecuteWithRetryandCircuitBreaker method:

public HttpResponseMessage ExecuteWithRetryandCircuitBreaker(string uri, Func<HttpResponseMessage> func)

{

 PolicyWrap<HttpResponseMessage> resiliencePolicyWrap =

 Policy.Wrap(_timeoutPolicy, _retryPolicy, _circuitBreakerPolicy);

 PolicyWrap<HttpResponseMessage> fallbackPolicyWrap =

 _fallbackPolicy.Wrap(_fallbackCircuitBreakerPolicy.Wrap(resiliencePolicyWrap));

 var res = fallbackPolicyWrap.Execute(() => func());

 return res;

}

Implementing caching
When making a web request or calling a remote service, Polly can be used to cache the
response from the remote service and improve the performance of the application's
response time. The Polly cache is classified into two caches, known as the in-memory
cache and the distributed cache. We will configure the in-memory cache in this
section.

First, we need to add another Polly.Caching.MemoryCache package from NuGet. Once this is
added, we will modify our Startup class and add the IPolicyRegistry as a member
variable:

private IPolicyRegistry<string> _registry;

In the ConfigurationServices method, we will initialize the registry and add it as a
singleton object through DI:

_registry = new PolicyRegistry();

services.AddSingleton(_registry);

In the configure method, we will define the cache policy that takes the cache provider
and the time to cache the responses. Since we are using in-memory cache, we will
initialize the memory cache provider and specify it in the policy as follows:

Polly.Caching.MemoryCache.MemoryCacheProvider memoryCacheProvider = new MemoryCacheProvider(memoryCache);

CachePolicy<HttpResponseMessage> cachePolicy = Policy.Cache<HttpResponseMessage>(memoryCacheProvider, TimeSpan.FromMinutes(10));

Finally, we will add the cachepolicy to our registry, which is initialized in the
ConfigurationServices method. We named our registry cache:

_registry.Add("cache", cachePolicy);

Modify our UserController class and declare the generic CachePolicy as follows:

CachePolicy<HttpResponseMessage> _cachePolicy;

We will now modify our UserController constructor and add the registry, which will be
injected through the DI. This registry object is used to get the cache defined in the
Configure method.

Here is the modified constructor of the UserController class:

public UserController(HttpClient client, IResilientHttpClient resilientClient, IPolicyRegistry<string> registry)

{

 _client = client;

 // _circuitBreakerPolicy = circuitBreakerPolicy;

 _resilientClient = resilientClient;

 _cachePolicy = registry.Get<CachePolicy<HttpResponseMessage>>("cache");

}

Finally, we will define a GET method that calls another service to get the list of users
and cache it in the memory. To cache the responses, we will wrap our custom resilient
client GET method with the Execute method of the cache policy as follows:

[HttpGet]

public async Task<IActionResult> Get()

{

 //Specify the name of the Response. If the method is taking

 //parameter, we can append the actual parameter to cache unique

 //responses separately

 Context policyExecutionContext = new Context($"GetUsers");

 var response = _cachePolicy.Execute(()=>

 _resilientClient.Get("http://localhost:7637/api/users"), policyExecutionContext);

 if (response.IsSuccessStatusCode)

 {

 var result = response.Content.ReadAsStringAsync();

 return Ok(result);

 }

 return StatusCode((int)response.StatusCode, response.Content.ReadAsStringAsync());

}

When the request is returned, it will check whether the cache context is empty or
expired, and the request will be cached for 10 minutes. All subsequent requests during
that time will read the response from the in-memory cache store. Once the cache has
expired, based on the set time limit, it will invoke the remote service again and cache
the response.

Implementing health checks
Health checks are part of the proactive strategy, where the services' health can be
monitored in a timely fashion. They also allow you to take actions proactively if any
service is not responding or is in a failure state.

In ASP.NET Core, we can easily implement health checks by using the HealthChecks
library, which is available as a NuGet package. To use HealthChecks, we can just simply
add the following NuGet package to our ASP.NET Core MVC or Web API project:

Microsoft.AspNetCore.HealthChecks

We have to add this package to the application that monitors the services and the
services whose health needs to be monitored.

Add the following code in the ConfigureServices method of the Startup class of the
application that is used to check the health of services:

services.AddHealthChecks(checks =>

{

 checks.AddUrlCheck(Configuration["UserServiceURL"]);

 checks.AddUrlCheck(Configuration["EmailServiceURL"]);

});

In the preceding code, we have added two service endpoints to check the health status.
These endpoints are defined in the appsettings.json file.

The health check library checks the health of the services specified using the AddUrlCheck
method. However, the services whose health needs to be monitored by external
applications or services need some modification in the Startup class. We have to add
the following code snippet to all of the services to return their health status:

services.AddHealthChecks(checks =>

{

 checks.AddValueTaskCheck("HTTP Endpoint", () => new

 ValueTask<IHealthCheckResult>(HealthCheckResult.Healthy("Ok")));

});

If their health is good and the service is responding, it will return Ok.

Finally, we can add the URI in the monitoring application, which will trigger the
health check middleware to check the services' health and display the health status. We
have to add UseHealthChecks and specify the endpoint used to trigger the services' health
status:

public static IWebHost BuildWebHost(string[] args) =>

WebHost.CreateDefaultBuilder(args)

.UseHealthChecks("/hc")

.UseStartup<Startup>()

.Build();

When we run our monitoring application and access the URI, for
example, http://{base_address}/hc to get the health status, if all the services are in
working order, we should see the following response:

Storing sensitive information
using Application Secrets
Every application has some configuration holding sensitive information, such as
database connection strings, the secret keys of some third providers, and other
sensitive information usually stored in the configuration files or the database. It is
always a better option to secure all sensitive information to protect these resources
from intruders. Web applications are usually hosted on servers, and this information
can be read by just navigating to the server's path and accessing files, even though
servers always have protected access and only authorized users are eligible to access
the data. However, keeping information in plain text is not a good practice.

In .NET Core, we can use the Secret Manager tool to protect the sensitive information
of an application. The Secret Manager tool allows you to store information in a
secrets.json file, which is not stored within the application folder itself. Instead, that file
is saved at the following path for different platforms:

Windows: %APPDATA%microsoftUserSecrets{userSecretsId}secrets.json

Linux: ~/.microsoft/usersecrets/{userSecretsId}/secrets.json

Mac: ~/.microsoft/usersecrets/{userSecretsId}/secrets.json

{userSecretId} is the unique ID (GUID) associated with your application. Since this is
saved in the separate path, each developer has to define or create this file in their own
directory under the UserSecrets directory. This restricts the developer from checking in
the same file for the source control and keeps the information separate to each user.
There are scenarios where a developer uses their own account credentials for database
authentication and so this facilitates in keeping certain information isolated from other
information.

From Visual Studio, we can simply add the secrets.json file by right-clicking on the
project and selecting the Manage User Secrets option, which is shown as follows:

When you select Manage User Secrets, Visual Studio creates a secrets.json file and
opens it in Visual Studio to add configuration settings in JSON format. If you open the
project file, you see the entry of the UserSecretsId stored in your project file:

So, if you accidently close the secrets.json file, you can open it from the path where
UserSecretsId is the subfolder inside the user secrets path, which is shown in the
preceding screenshot.

Here is the sample content of the secrets.json file that contains the logging information,
remote services URL, and the connection string:

{

 "Logging": {

 "IncludeScopes": false,

 "Debug": {

 "LogLevel": {

 "Default": "Warning"

 }

 },

 "Console": {

 "LogLevel": {

 "Default": "Warning"

 }

 }

 },

 "EmailServiceURL": "http://localhost:6670/api/values",

 "UserServiceURL": "http://localhost:6546/api/user",

 "ConnectionString": "Server=OVAISPC\sqlexpress;Database=FraymsVendorDB;

 User Id=sa;Password=P@ssw0rd;"

}

To access this in the ASP.NET Core application, we can add the following namespace
in our Startup class:

using Microsoft.Extensions.Configuration;

Then, inject the IConfiguration object and assign it to the Configuration property:

public Startup(IConfiguration configuration)

{

 Configuration = configuration;

}

public IConfiguration Configuration { get; }

Finally, we can access the variables using the Configuration object as follows:

var UserServicesURL = Configuration["UserServiceURL"]

services.AddEntityFrameworkSqlServer()

.AddDbContext<VendorDBContext>(options =>

{

 options.UseSqlServer(Configuration["ConnectionString"],

 sqlServerOptionsAction: sqlOptions =>

 {

 sqlOptions.MigrationsAssembly(typeof(Startup)

 .GetTypeInfo().Assembly.GetName().Name);

 sqlOptions.EnableRetryOnFailure(maxRetryCount: 10,

 maxRetryDelay: TimeSpan.FromSeconds(30), errorNumbersToAdd: null);

 });

}, ServiceLifetime.Scoped

);

}

Protecting ASP.NET Core APIs
Securing web applications is an important milestone for any enterprise-grade
application to protect not only the data, but also to protect it from different attacks
from malicious sites.

There are various scenarios where security is an important factor for any web
application:

The information sent over the wire contains sensitive information.
APIs are exposed publicly and are used by users to perform bulk operations.
APIs are hosted on a server where the user can use some tools to do packet
sniffing and read sensitive data.

To address the preceding challenges and to secure our application, we should consider
the following options:

SSL (Secure Socket Layer)
Add security at the transport or network level, where when, the data is sent from the
client to the server, it should be encrypted. The SSL (Secure Socket Layer) is the
recommended way of securing information sent over the wire. Use SSL in a web
application to encrypt all of the data that is sent from the client's browser to the server
over the wire where it is decrypted at the server level. Apparently, it seems like a
performance overhead, but due to the specifications of the server resources we have in
today's world, it seems quite negligible.

Enabling SSL in an ASP.NET
Core application
To enable SSL in our ASP.NET Core project, we can add filters in the AddMvc method
defined in the ConfigureServices method of our Startup class. Filters are used to filter the
HTTP calls and take certain actions:

services.AddMvc(options =>

{

 options.Filters.Add(new RequireHttpsAttribute())

});

Filters added in the AddMvc method are global filters and interrupt all HTTP requests,
irrespective of a specific controller or action. We added the RequireHttpsAttribute filter,
which validates the incoming request and checks whether the request is on HTTP or
HTTPS. If the request is on HTTP, it will auto redirect the request to HTTPS and use
the default port, which is 443 in the case of HTTPS. Adding the preceding code snippet
is not enough to run our application on SSL. We also need to tell the launchSettings.json
file to use the HTTPS port and enable SSL for our project. One way to do this is to
enable SSL from the Debug tab in the Visual Studio project properties window, which
is shown as follows:

This also modifies the launchSettings.json file and adds the SSL. Another way is to
directly modify the port number from the launchSetttings.json file itself. Here is the
launchsettings.json file that uses port 44326 for SSL, which has been added under

iisSettings:

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:3743/",

 "sslPort": 44326

 }

 },

The default HTTP port, which is shown in the preceding code, is set to 3743. As in the
AddMvc middleware, we have specified a filter to use SSL for all incoming requests. It
will automatically redirect to the HTTPS and use port 44326.

To host ASP.NET Core on IIS, please refer to the following link. Once the website is
up and running, the HTTPS binding can be added through the Site bindings options in
IIS: https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/index?tabs=aspnetcore2x

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/index?tabs=aspnetcore2x

Preventing CSRF (Cross-Site
Request Forgery) attacks
CSRF is an attack that executes unsolicited operations on a web application on behalf
of the authenticated user. Since the attacker is unable to forge the response of the
request, it is implicated mostly on HTTP POST, PUT, and DELETE methods, which are used to
modify the insert, update, or delete data on the server.

ASP.NET Core provides a built-in token to prevent CSRF attacks, and you can do this
yourself by adding the ValidateAntiForgeryTokenAttribute filter while adding MVC in the
ConfigureServices method of the Startup class. Here is the code to add an anti-forgery
token globally to your ASP.NET Core application:

public void ConfigureServices(IServiceCollection services)

{

services.AddMvc(options => { options.Filters.Add(new ValidateAntiForgeryTokenAttribute()); });

 }

Alternatively, we can also add ValidateAntyForgeryToken on specific controller action
methods. In that case, we don’t have to add the ValidateAntiForgeryTokenAttribute filter in
the ConfigureServices method of the Startup class. Here is the code to protect the HTTP POST
action method from CSRF attacks:

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> Submit()

{

 return View();

}

CORS (Cross Origin Security)

The second option is to enable CORS (Cross-Origin Security) for authenticated origins,
headers, and methods. Setting CORS allows your APIs to be only accessible from
configured origins. In ASP.NET Core, CORS can be easily set by adding middleware
and defining its policy.

The ValidateAntiForgery attribute tells ASP.NET Core to put the token in the form, and
when it’s submitted, it validates and ensures that the token is valid. This prevents your
application from CSRF attacks by validating the token for every HTTP POST, PUT, and
other HTTP requests, and protects the forms from being posted maliciously.

Reinforcing security headers
Many modern browsers provide additional security features. These security features
are automatically enabled by the browser running your site if the response contains
those headers. In this section, we will discuss how we can add those headers in our
ASP.NET Core application and enable additional security in the browser.

To investigate which headers are missing in our application, we can use the www.Security
Headers.io site. However, to use this, we need our site to be publicly accessible on the
internet.

Alternatively, we can use ngrok to make a HTTP tunnel to our local application, which
makes our site accessible from the internet. The ngrok tool can be downloaded from the
following link: https://ngrok.com/download.

You can select the version of OS you have and download a particular installer
accordingly.

Once ngrok is installed, you can open it and the run following command. Please note
that your site should be running locally before executing the following command:

ngrok http -host-header localhost 7204

You can replace localhost with your server IP and 7204 to the port your application is
listening on.

Running the preceding command will generate the public URL, as specified in the
Forwarding property, as follows:

We can now use this public URL in www.securityheaders.io, which scans our site and gives
us the result. It categorizes the site and provides an alphabet starting from A to F,

http://www.SecurityHeaders.io
https://ngrok.com/download
http://www.securityheaders.io

where A is an excellent score that means the site contains all security headers, and F
means that the site is not secure and does not contain security headers. Scanning the
default ASP.NET Core site generated from the default template scored F, which is
shown as follows. It also shows the missing headers, which are boxed in red:

First of all, we should enable HTTPS on our site. To enable HTTPS, please refer to the
section related to SSL. Next, we will add the NWebsec.AspNetCore.Middleware package from
NuGet as follows:

NWebsec comes with various middleware that can be added to our application from
the Configure method of the Startup class.

Adding the HTTP strict
transport security header
The strict transport security header is an excellent feature that strengthens the
implementation of TLS (Transport Level Security) by getting the User Agent and
forcing it to use HTTPS. We can add the strict transport security header by adding the
following middleware to our Configure method of the Startup class:

app.UseHsts(options => options.MaxAge(days:365).IncludeSubdomains());

This middleware enforces your site so that it can only be accessed over HTTPS for a
year. This applies to subdomains as well.

Adding the X-Content-Type-
Options header
This header stops a browser from trying to MIME-sniff the content type and forces it to
stick with the declared content-type. We can add this middleware as follows, in the
Configure method of the Startup class:

app.UseXContentTypeOptions();

Adding the X-Frame-Options
header
This header allows the browser to protect your site from being rendered inside a frame.
By using the following middleware, we can prevent our site from framing so that we
can defend it against different attacks, where the most famous one is clickjacking:

app.UseXfo(options => options.SameOrigin());

Adding the X-Xss-Protection
header
This header allows the browser to stop pages from loading when they detect Cross Site
scripting attacks. We can add this middleware in the Configure method of the Startup
class, as follows:

app.UseXXssProtection(options => options.EnabledWithBlockMode());

Adding the Content-Security-
Policy header
The Content-Security-Policy header protects your application by whitelisting the
sources of approved content and preventing the browser from loading malicious
resources. This can be added by adding the NWebsec.Owin package from NuGet and
defining it in the Configure method of the Startup class as follows:

app.UseCsp(options => options

.DefaultSources(s => s.Self())

.ScriptSources(s => s.Self()));

In the preceding code, we have mentioned the DefaultSources and ScriptSources to load all
the resources from the same origin. If there are any scripts or images that need to be
loaded from external sources, we can define the custom sources as follows:

app.UseCsp(options => options

 .DefaultSources(s => s.Self()).ScriptSources(s => s.Self().CustomSources("https://ajax.googleapis.com")));

 For the complete documentation on this topic, please refer to the following URL: https
://docs.nwebsec.com/en/4.1/nwebsec/Configuring-csp.html.

https://docs.nwebsec.com/en/4.1/nwebsec/Configuring-csp.html

Adding the referrer-policy
header
When a user navigates the site and click links to other sites, the destination site usually
receives information about the origin site the user came from. The referrer header lets
you control what information should be present in the header, which can be read by the
destination site. We can add the referrer policy middleware in the Configure method of
the Startup class as follows:

app.UseReferrerPolicy(opts => opts.NoReferrer());

The NoReferrer option means that no referrer information will be sent to the target site.

After enabling all of the preceding middleware in our ASP.NET Core application,
when we scan through the securityheaders.io site, we will see that we have a security
report summary with an A+, which means that the site is completely secured:

http://securityheaders.io

Enabling CORS in the
ASP.NET Core application
CORS stands for Cross-Origin Resource Sharing, and it is restricted by browsers to
prevent API requests across domains. For example, we have an SPA (Single-Page
Application) running on a browser using a client-side framework like Angular or React
to make calls to the Web APIs hosted on another domain, like my SPA site having a
domain (mychapter8webapp.com) and accessing the APIs of another domain (appservices.com),
which is restricted. Making calls to the services hosted on some other server and
domain is restricted by browsers, and users will not be able to call those APIs.
Enabling CORS on the server-side level addresses this problem.

To enable CORS in our ASP.NET Core project, we can add CORS support in the
ConfigureServices method:

services.AddCors();

In the Configure method, we can use CORS by calling the UseCors method and defining
the policies to allow cross-domain requests. The following code allows requests to be
made from any header, origin, or method, and also allows us to pass credentials in the
request header:

app.UseCors(config => {

 config.AllowAnyHeader();

 config.AllowAnyMethod();

 config.AllowAnyOrigin();

 config.AllowCredentials();

});

The preceding code will allow CORS globally in the application. Alternatively, we can
also define CORS policies and enable them on specific controllers depending on
different scenarios.

The following table defines the basic terminology used in defining CORS:

Terminology Description Sample

Header Request header allowed to be passed
within the request

Content-Type, Accept,
and so on

http://mychapter8webapp.com
http://appservices.com

Method HTTP verb of the request GET, POST, DELETE,
PUT, and so on

Origin Domain or request URL http://techframeworx.com

To define the policies, we can add a policy when adding CORS support in the
ConfigureServices method. The following code shows two policies that have been defined
while adding CORS support:

services.AddCors(config =>

{

 //Allow only HTTP GET Requests

 config.AddPolicy("AllowOnlyGet", builder =>

 {

 builder.AllowAnyHeader();

 builder.WithMethods("GET");

 builder.AllowAnyOrigin();

 });

 //Allow only those requests coming from techframeworx.com

 config.AddPolicy("Techframeworx", builder => {

 builder.AllowAnyHeader();

 builder.AllowAnyMethod();

 builder.WithOrigins("http://techframeworx.com");

 });

});

The AllowOnlyGet policy will only allow requests that are making a GET request; the
Techframeworx policy will only allow requests that are being made from techframeworx.com.

We can use these policies on Controllers and Actions by using the EnableCors attribute
and specifying the name of the attribute:

[EnableCors("AllowOnlyGet")]

public class SampleController : Controller

{

 }

http://techframeworx.com
http://www.techframeworx.com/

Authentication and
authorization
Secure APIs only allow access to authenticated users. In ASP.NET Core, we can use
the ASP.NET Core Identity framework to authenticate users and provide authorized
access to protected resources.

Using ASP.NET Core Identity
for authentication and
authorization
Security, in general, is divided into two mechanisms, which are as follows:

Authentication
Authorization

Authentication
Authentication is the process of authenticating the user's access by getting their
username, password, or authentication token and then validating it from the backend
database or service. Once the user is authenticated, certain actions are done, which
involves setting up a cookie in the browser or returning a token to the user so that it
can be passed in the request message to access protected resources.

Authorization
Authorization is the process that is done after user authentication. Authorization is
used to learn the permissions of the user accessing the resource. Even though the user
is authenticated, it does not mean that all the protected or secured resources are
accessible. This is where authorization comes into play and only allows the user to
access resources that they are permitted to access.

Implementing authentication
and authorization using the
ASP.NET Core Identity
framework
ASP.NET Core Identity is the security framework developed by Microsoft and is now
contributed to by the open source community. This allows a developer to enable user
authentication and authorization in an ASP.NET Core application. It provides the
complete system of storing user identities, roles, and claims in a database. It contains
certain classes for user identity, roles, and so on, which can be extended further to
support more properties, depending on the requirements. It uses Entity Framework
Core code for the first model to create the backend database and can be easily
integrated with existing data models or the application's specific tables.

In this section, we will create a simple application to add ASP.NET Core Identity from
scratch and modify the IdentityUser class to define additional properties and use cookie-
based authentication to validate requests and secure ASP.NET MVC controllers.

When creating an ASP.NET Core project, we can change the authentication option to
Individual User Account authentication, which scaffolds all the security-specific
classes and configures security in your application:

This creates an AccountController and PageModels to register, login, forgot password, and
other user management-related pages.

The Startup class also contains some entries related to security. Here is the
ConfigureServices method, which adds some code that is specific to security:

public void ConfigureServices(IServiceCollection services)

{

 services.AddDbContext<ApplicationDbContext>(options =>

 options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddIdentity<ApplicationUser, IdentityRole>()

 .AddEntityFrameworkStores<ApplicationDbContext>()

 .AddDefaultTokenProviders();

 services.AddMvc()

 .AddRazorPagesOptions(options =>

 {

 options.Conventions.AuthorizeFolder("/Account/Manage");

 options.Conventions.AuthorizePage("/Account/Logout");

 });

 services.AddSingleton<IEmailSender, EmailSender>();

}

AddDbContext uses the SQL server to create Identity tables in the database, as specified in
the DefaultConnection key as follows:

services.AddIdentity is used to enable Identity in our application. It takes
ApplicationUser and IdentityRole and defines ApplicationDbContext to use as the Entity
framework, which is used to store the created entities.
AddDefaultTokenProviders is defined to generate tokens for reset passwords, changing
email, changing telephone number, and two-factor authentication.

In the Configure method, it adds the UseAuthentication middleware, which enables the
authentication and protects the pages or controllers that are configured to authorize
requests. Here is the Configure method that enables authentication in the pipeline. The
middleware which is defined is executed in a sequence. Therefore, the UseAuthentication
middleware is defined before the UseMvc middleware so that all of the requests that will
be invoking the controllers will be authenticated first:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseBrowserLink();

 app.UseDeveloperExceptionPage();

 app.UseDatabaseErrorPage();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 }

 app.UseStaticFiles();

 app.UseAuthentication();

 app.UseMvc();

}

Adding more properties in the
user table
IdentityUser is the base class, which contains properties such as email, password, and
phone number, which are related to the user. When we create the ASP.NET Core
application, it creates an empty ApplicationUser class that inherits from the IdentityUser
class. In the ApplicationUser class, we can add more properties that will be created once
the entity framework migration is run. We will add FirstName, LastName, and MobileNumber
properties in our ApplicationUser class, which will be considered when the table is
created:

public class ApplicationUser : IdentityUser

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string MobileNumber { get; set; }

}

Before running the migration, make sure that the DefaultConnection string specified in the
ConfigureServices method of the Startup class is valid.

We can run the migration from the Package Manager Console in Visual Studio or
through the dotnet CLI toolset. From Visual Studio, select the specific project and run
the Add-Migration command, specifying the migration name, which is Initial in our case:

The preceding command creates the {timestamp}_Initial class file containing the Up and
Down methods. The Up method is used to publish the changes in the backend database,
whereas the Down method is used to revert the changes done in the database. To apply
the changes to the backend database, we will run the Update-Database command, which
creates a database that contains AspNet-related tables, which are part of the Identity
framework. If you open the AspNetUsers table in design mode, you will see that the
custom columns FirstName, LastName, and MobileNumber are there:

We can run the application and create users using the Register option. To protect our
APIs, we have to add the Authorize attribute to the Controller or Action level. When the
request comes and the user is authenticated, the method will be executed; otherwise, it
redirects the request to the Login page.

Summary
In this chapter, we have learned about resiliency, which is a very important factor
when developing highly performant applications in .NET Core. We learned about
different policies and used the Polly framework to use those policies in .NET Core.
We also learned about safe storage mechanisms and how to use them in a development
environment in order to keep sensitive information separate from the project
repository. At the end of this chapter, we learned about some core fundamentals,
which included SSL, CSRF, CORS, enabling security headers, and the ASP.NET
Core Identity framework to protect ASP.NET Core applications.

In the next chapter, we will learn about some key metrics and necessary tools to
monitor the performance of .NET Core applications.

Microservices Architecture
Microservices application development is growing at a rapid pace in the software
industry. It is widely used for developing performant applications that are resilient,
scalable, distributed, and cloud-ready. Many organizations and software companies are
transforming their applications into the microservices architecture style. Amazon,
eBay, and Uber are good examples of companies that have transformed their
applications into microservices.

Microservices split the application horizontally and vertically into smaller
components, where the components are independent of one another and communicate
through an endpoint. With the recent development in the industry of containers, we can
use containers to deploy/run microservices that can scale up or scale out independently
without any dependency on other components of the application and are leveraged
with the pay-as-you-go model.

Today, we can use Azure Container Service (ACS) or Service Fabric to deploy .NET
Core applications in the cloud and provide a containerization model with the
consortium of Docker, Kubernetes, and other third-party components.

In this chapter, we will learn the fundamentals of microservices architecture and its
challenges, and create a basic application following microservices principles and
practices.

The following are the topics we will learn in this chapter:

Microservices architecture
Benefits and standard practices
Stateless versus stateful microservices
Decomposing databases and its challenges
Developing microservices in .NET Core
Running .NET Core microservices on Docker

Microservices architecture
Microservices architecture is an architectural style in which the application is loosely
coupled; it is divided into components based on business capability or domain, and
scales independently without affecting other services or components of the application.
This contrasts with the monolithic architecture, where a full application is deployed on
a server or a Virtual Machine (VM) and scaling out is not a cost-effective or easy
solution. For each scale-out operation, a new VM instance has to be cloned and the
application needs to be deployed.

The following diagram shows the architecture of a monolithic application, where most
of the functionality is isolated within a single process and scaling out to multiple
servers requires the full deployment of the application on the other server:

The following is a representation of microservices architecture, which separates an
application into smaller services and, based on the workload, scales independently:

In microservices architecture, the application is divided into loosely coupled services,
each of which exposes an endpoint and is deployed on a separate server or, most
likely, container. Each service communicates with the other services through some
endpoint.

Benefits of microservices
architecture
There are various benefits of microservices architecture, which are as follows:

Microservices are autonomous and expose a self-contained unit of functionality
with loosely coupled dependencies on other services
It exposes features to a caller via a well-defined API contract
It degrades gracefully if any service fails
It scales up and scales out independently
It is best suited for containerized deployment, which is a cost-effective solution
when compared to VMs
Each component can be reused through an endpoint and modifying any service
does not affect other services
Development is faster when compared to monolithic architecture
As each microservice provides a particular business capability, it is easily
reusable and composable
As each service is independent, using old architecture or technology is not a
concern.
It is resilient and eliminates monolith failover scenarios

Standard practice when
developing microservices
As standard practice, microservices are designed and decomposed based on business
capability or business domain. Business domain decomposition follows a Domain-
Driven Design (DDD) pattern, where each service is developed to provide specific
functionality of the business domain. This contrasts with a layered architecture
approach, in which the application is divided into multiple layers, where each layer is
dependent on another layer and has tight dependencies on it, and removing any layer
breaks the whole application.

The following diagram illustrates the difference between layered architecture and
microservices architecture:

Types of microservices
Microservices are divided into two categories, which are as follows:

Stateless microservices
Stateful microservices

Stateless microservices
A stateless service has either no state or the state can be retrieved from an external data
store. As the state is stored separately, multiple instances can run at the same time.

Stateful microservices
A stateful service maintains the state within its own context. Only a single instance is
active at a time. However, the state is replicated to other inactive instances as well.

DDD
DDD is a pattern that emphasizes the business domain of the application. When
building the application following a DDD pattern, we divide the application based on
business domains, where each domain has one or more bounded contexts and the
bounded context represents the business requirement. In technical terms, each bounded
context has its own code and persistence mechanism and is independent of the others.
Consider a vendor-management system where a vendor registers with the website, logs
into the website, updates their profile, and attaches quotations. Each type of action will
be termed the bounded context and is independent of the others. A set of vendor-
operations can be termed a vendor domain.

DDD splits the requirement into domain-specific chunks known as bounded contexts,
where each bounded context has its own model, logic, and data. There are chances that
a single service is used by many services because of the core functionality it provides.
For example, a vendor registration service uses an identity service to create a new user
and the same identity service may be used by some other service to log into the
system.

Data manipulation with
microservices
As a general practice, each service provides specific business functionality to the user
and involves Create, Read, Update, and Delete (CRUD) operations. In enterprise
applications, we have one or more databases that have a number of tables. Following
the DDD pattern, we can design each service that focuses on the specific domain.
However, there are conditions where we need to extract the data from some other
databases or tables that are out of scope from the service's domain. However, there are
two options to address this challenge:

Wrapping microservices behind an API gateway
Decomposing data into a flat schema for read/query purposes

Wrapping microservices behind
an API gateway
An enterprise application that is based on microservices architecture contains many
services. An Entity Resource Planning (ERP) system contains many modules, such
as Human Resources (HR), financial, purchase requisition, and others. Each module
may have a number of services providing specific business features. For example, the
HR module may contain the following three services:

Personal record management
Appraisal management
Recruitment management

The personal record management service exposes certain methods to create, update, or
delete an employee's basic information. The appraisal-management service exposes
certain methods to create appraisal requests for an employee, and the recruitment-
management service performs new hiring decisions. Suppose we need to develop a
web page that contains the basic employee information and the total number of
appraisals done in the last five years. In this case, we will be calling two services,
namely personal-record management and appraisal management, and two separate
calls will be made by the caller to these services. Alternatively, we can wrap these two
calls into a single call using an API gateway. The technique to address this scenario is
known as API composition and is discussed in the What is API composition? section
later in the chapter.

Denormalizing data into a flat
schema for read/query purposes
This is another technique where we want to consume a service to read data from
heterogeneous sources. It could be from multiple tables or databases. To transform
multiple service calls into a single call, we can design each service and use patterns
such as publisher/subscriber or mediator that listen for any CRUD operation to be
performed on any service, save the data into a flat schema, and develop a service that
only reads the data from that table(s). The technique to address this scenario is known
as Command Query Responsibility Segregation (CQRS) and is discussed in the
CQRS section later in the chapter.

Consistency across business
scenarios
As we understand that each service is designed to serve a specific business
functionality, let's take an example of an order-management system where a customer
comes to the website and places an order. Once the order is placed, it is reflected in the
inventory. In this scenario, we can have two microservices: one that places an order
and creates a database record into the order database and an inventory service that
performs CRUD on the inventory-related tables:

The important practice to follow when implementing an end-to-end business scenario
and bringing consistency across multiple microservices is to keep the data and model
specific to their domain. Considering the preceding example, the order placement
service should not access or perform CRUD operations other than order tables, and if it
is necessary to access any data which is out of the domain of that service, it should call
that service directly.

An Atomicity, Consistency, Integrity, and Durability (ACID) transaction is another
challenge. We may have multiple services serving one complete transaction, where
each transaction is behind and operated by a separate service. To accommodate ACID
transactions with the microservices architecture style, we can implement
asynchronous event-driven communication, which is discussed later in the chapter.

Communication with
microservices
In microservices architecture, each microservice is hosted at some server, most likely a
container, and exposes an endpoint. These endpoints can be used to communicate to
that service. There are many protocols that we can use but REST-based HTTP
endpoints are most widely used due to their accessibility support on many platforms.
In ASP.NET Core, we can create microservices using the ASP.NET Core MVC
framework and use them through a RESTful endpoint. There are microservices that
use other microservices as well to complete a particular operation and this can easily
be done using the HttpClient class in .NET Core. However, we should design in such a
way that our service offers resiliency and handles transient faults.

Database architecture in
microservices
With microservices architecture, each service provides a certain functionality and has
minimal dependencies on other services. However, porting the relational database into
the smaller sets is a challenge, where each set represents a particular domain and
contains tables related to that domain. Segregating tables based on domain and making
them individual databases needs proper consideration.

Let's consider the vendor management system that provides Business-to-Consumer
(B2C) and Business-to-Business (B2B) processes and involves the following
operations:

Vendor registers with the website
Vendor adds products that can be purchased by other vendors or customers
Vendor places orders to purchase products

To implement the preceding scenario, we can decompose the database based on the
following two patterns:

Tables per service
Database per service

Tables per service
With this design, each service is designed to use specific tables in the database. In this
scenario, the database is centralized and hosted at one place. Other microservices also
connect to the same database but deal with their own domain-specific tables:

This helps us to use the central database but any modification in the schema may break
or require an update for one or many microservices.

Database per service
With this design, each service has its own database and the application is loosely
coupled. Modifications in the database do not harm or break any other service and
offer complete isolation. This design is good for deployment scenarios, as each service
contains its own database deployed in its own container:

Challenges in segregating tables
or databases per service
Segregating tables or databases as per business capability or business domain is
recommended to limit dependencies and keep it intact with the domain model. But it
also comes with some challenges. For example, we have two services: a vendor service
and an order service. The vendor service is used to create a vendor record in its own
vendor database, and the order service to place orders for a particular vendor. The
challenge comes when we need to return the aggregated record of both the vendor and
their orders to the user. To solve this problem, we can use either of the following two
approaches:

API composition
CQRS

What is API composition?
API composition is a technique in which multiple microservices are composed to
expose one endpoint to the user and provides an aggregated view. In a single database,
this is easily possible by making a SQL query join and getting the data from different
tables.

Let's consider the vendor management system, where we have two services. One is
used to register a new vendor and has a corresponding database to persist vendor
demographics, address, and other information. The other service is the order service,
which is used to store the transactional data of the vendor and contains order
information such as order number, quantity, and so on. Suppose we have a requirement
to display the list of vendors with all the orders that are completed. With this scenario,
we can provide a method in the vendor registration service that first loads the vendor
details from its own data store, then loads their orders by calling the order service, and
finally returns the aggregated data.

CQRS
CQRS is a principle in which application commands such as create, update, and delete
are segregated by read operations. It works on the event-based model and when any
create, update, or delete action is taken on the API, the event handler is invoked and
stores that information into its own corresponding data store. We can implement
CQRS in the previous vendor registration example, which will facilitate querying the
vendor and their orders from a single service. When any command (create, update,
delete) operation is performed on the vendor or order service, it will invoke the handler
that invokes the query service to save the updated data into its store.

We can keep the data in a flat schema or used NoSQL database to hold all the
information about the vendor and their orders and read them when required:

The preceding diagram represents three services: vendor service, order service, and
query service. When any create, update, or delete operation is performed on the vendor
service, the event is raised and the corresponding handler is invoked that makes the
HTTP POST, PUT, or DELETE request on the query service to save or update its data

store. The same goes for the order service, which calls the query service and stores the
information related to orders. Finally, the query service is used to read the cumulative
data of independent services in a single call.

The benefits of this approach are as follows:

We can make optimize the query database by defining cluster and non-cluster
indexes
We can use some other database model, such as NoSQL, MongoDB, or
Elasticsearch, to provide a faster retrieval and search experience to the user
Each service has its own data store but, with this approach, we can aggregate the
data in one place
We can use the query data for reporting purposes

CQRS can be implemented using the mediator pattern, which we will discuss later in
the chapter.

Developing microservices
architecture with .NET Core
So far, we have learned the fundamentals of microservices and the importance of
DDD. In this section, we will develop a microservices architecture for a sample
application that contains the following features:

Identity service
Vendor service

Creating a sample app in .NET
Core using microservices
architecture
In this section, we will create a sample app in .NET Core and define services that
include the authorization server, a vendor service, and an order service. To start with,
we can use either Visual Studio 2017 or Visual Studio Code and create projects using
dotnet Command-Line Interface (CLI) tools. The advantage of choosing Visual
Studio 2017 is that it provides an option while creating the project to enable Docker
support, add the Docker-related files, and make Docker the startup project:

Solution structure
The structure of the solution will look like the following:

In the preceding structure, we have root folders, namely Core, Microservices, and WebFront.
The common and core components reside in Core, all the microservices reside in the
Microservices folder, and WebFront contains the frontend projects, most likely the
ASP.NET MVC Core project, mobile application, and so on.

Creating projects inside designated folders gives proper meaning to the solution and
makes it easy to understand the overall picture of the solution.

The following table shows the projects created inside each folder:

Folder Project name Project
type

Description

Core Infrastructure

.NET
Standard
2.0

Contains repository classes,
UnitOfWork and BaseEntity

Core APIComponents

.NET
Standard
2.0

Contains BaseController,
LoggingActionFilter and
ResilientHttpClient

Microservices

> AuthServer
Identity.AuthServer

ASP.NET
Core 2.0
web API

Authorization server using
OpenIddict and ASP.NET
Core Identity

Microservices

>

Vendor

Vendor.API

ASP.NET
Core 2.0
web API

Contains vendor API
controllers

Microservices

>

Vendor

Vendor.Domain

.NET
Standard
2.0

Contains domain models
specific to the vendor domain

Microservices

>

Vendor

Vendor.Infrastructure

.NET
Standard
2.0

Contains vendor-specific
repository and database
context

WebFront FraymsWebApp

ASP.NET
Core 2.0
web app

Contains frontend views,
pages, and client-side
framework

Logical architecture
The logical architecture of the sample application represents two microservices,
namely the identity service and vendor service. The identity service is used to perform
user authentication and authorization, whereas the vendor service is used to perform
vendor registration:

We will be using the DDD approach to articulate the data model, where each service
will have its own corresponding tables.

The vendor service is based on business domain and is divided into three layers,
namely the API that exposes HTTP endpoints and is used by the client, the domain
that contains domain entities, aggregates, and DDD patterns, and the infrastructure
layer that contains all common classes that include repository, Entity Framework
(EF), Core context, and other helper classes.

The domain layer is the actual layer that defines the business logic and the entities,
usually Plain Old CLR Object (POCO), for a particular business scenario. It should
not have any direct dependency on any database framework or Object Relationship
Mapping (ORM) such as EF, Hibernate, and others. However, with EF Core, we have
a provision to keep entities separate from other assemblies and define them as POCO
entities, removing dependencies from EF Core libraries.

When a request comes to an API, it uses the domain layer to execute a particular
business scenario and pass the data it receives. The domain layer executes the business
logic and uses the infrastructure layer to perform CRUD on the database. Finally, the
response is sent back to the caller from an API:

Developing a Core
infrastructure project
This project contains the core classes and components used by the application. It will
contain some generic or base classes, façade, and other helper classes that are common
throughout the application.

We will create the following classes and discuss how they are useful for other projects
specific to microservices.

Creating the BaseEntity class
The BaseEntity class contains common properties being used by all the domain models
in our microservices projects. Usually, for all the transaction tables, we store CreatedBy,
CreatedOn, UpdatedBy, and UpdatedOn fields. When designing the entity model for each
service, we will inherit from the BaseEntity class so all these common properties will be
added to the table when the migration is run. Here is the code snippet of the BaseEntity
class:

public abstract class BaseEntity

{

 public BaseEntity()

 {

 this.CreatedOn = DateTime.Now;

 this.UpdatedOn = DateTime.Now;

 this.State = (int)EntityState.New;

 }

 public string CreatedBy { get; set; }

 public DateTime CreatedOn { get; set; }

 public string UpdatedBy { get; set; }

 public DateTime UpdatedOn { get; set; }

}

Any property being annotated with the NotMapped attribute does not create corresponding fields in the backend
database.

The UnitOfWork pattern
We will implement the UnitOfWork pattern to save the context changes in a single call to
the backend database. Updating the database on each object state change is not good
practice and reduces the application performance. Consider an example of a form that
contains a table where each row is editable. Committing a change in a database on
each row update reduces application performance. The better way is to keep each row
state in memory and update the database once the form is posted. With the Unit of
Work pattern, we can define an interface that contains the following four methods:

public interface IUnitOfWork: IDisposable

{

 void BeginTransaction();

 void RollbackTransaction();

 void CommitTransaction();

 Task<bool> SaveChangesAsync();

}

The interface contains transaction-related methods, namely BeginTransaction,
RollbackTransaction, and CommitTransaction, where SaveChangesAsync is used to save the
changes to the database. Each service has its own database context implementation and
implements the IUnitOfWork interface to provide transaction handling and save changes
to a backend database.

Creating a repository interface
We will create a generic repository interface that will be implemented by each
service's repository class, as each service will be following a DDD approach and has
its own repository to give meaningful information to the developer based on the
business domain. In this interface, we can keep generic methods such as All and
Contains and a property to return UnitOfWork:

public interface IRepository<T> where T : BaseEntity

{

 IUnitOfWork UnitOfWork { get; }

 IQueryable<T> All<T>() where T : BaseEntity;

 T Find<T>(Expression<Func<T, bool>> predicate) where T : BaseEntity;

 bool Contains<T>(Expression<Func<T, bool>> predicate) where T : BaseEntity;

}

Logging
Logging is an essential part of any enterprise application. Through logging, we can
trace or troubleshoot actual errors when the application is running. In any good
product, we usually see that each error has an error code. Defining error codes and
then using them while logging exceptions intuitively tells the developers or the support
team to troubleshoot and reach the point where the actual error occurred and provide a
solution. For all application-level errors, we can create a LoggingEvents class and specify
the constant values that can be further used during development. Here is the
LoggingEvents class that contains a few GET, CREATE, UPDATE, and other event codes. We can
create this class under a Façade folder inside the Infrastructure project:

public static class LoggingEvents

{

 public const int GET_ITEM = 1001;

 public const int GET_ITEMS = 1002;

 public const int CREATE_ITEM = 1003;

 public const int UPDATE_ITEM = 1004;

 public const int DELETE_ITEM = 1005;

 public const int DATABASE_ERROR = 2000;

 public const int SERVICE_ERROR = 2001;

 public const int ERROR = 2002;

 public const int ACCESS_METHOD = 3000;

}

Next, we will add another class, LoggerHelper, which will be used throughout our
application to get the exception stack trace from the exception. Here is the code
snippet of the LoggerHelper class:

public static string GetExceptionDetails(Exception ex)

{

 StringBuilder errorString = new StringBuilder();

 errorString.AppendLine("An error occured. ");

 Exception inner = ex;

 while (inner != null)

 {

 errorString.Append("Error Message:");

 errorString.AppendLine(ex.Message);

 errorString.Append("Stack Trace:");

 errorString.AppendLine(ex.StackTrace);

 inner = inner.InnerException;

 }

 return errorString.ToString();

}

Creating the APIComponents
infrastructure project
The APIComponents project contains the components specific to microservices. In this
project, we will create a BaseController class, which will add some classes related to
logging and can also extend to add further common objects used by concrete
controllers. Add a BaseController class under the Controllers folder inside the APIComponents
project. Here is the code snippet of the BaseController class:

public class BaseController : Controller

{

 private ILogger _logger;

 public BaseController(ILogger logger)

 {

 _logger = logger;

 }

 public ILogger Logger { get { return _logger; } }

 public HttpResponseMessage LogException(Exception ex)

 {

 HttpResponseMessage message = new HttpResponseMessage();

 message.Content = new StringContent(ex.Message);

 message.StatusCode = System.Net.HttpStatusCode.ExpectationFailed;

 return message;

 }

}

BaseController takes ILogger in a parametrized constructor that will be injected through
the built-in Dependency Injection (DI) component of ASP.NET Core.

The LogException method is used to log the exception and returns the HttpResponseMessage
that will be returned by the derived controller to the user in case of any error.

Next, we will add the Filters folder inside the APIComponents project and add all the
common filters that can be used by the microservices controllers. For now, we will just
add the LoggingActionFilter that can be used by annotating the Action methods of the
microservices controllers and automatically logging the information when the request
comes in and response goes out. Here is the code snippet of the LoggingActionFilter class:

public class LoggingActionFilter: ActionFilterAttribute

{

 public override void OnActionExecuting(ActionExecutingContext context)

 {

 Log("OnActionExecuting", context.RouteData, context.Controller);

 }

 public override void OnActionExecuted(ActionExecutedContext context)

 {

 Log("OnActionExecuted", context.RouteData, context.Controller);

 }

 public override void OnResultExecuted(ResultExecutedContext context)

 {

 Log("OnResultExecuted", context.RouteData, context.Controller);

 }

 public override void OnResultExecuting(ResultExecutingContext context)

 {

 Log("OnResultExecuting", context.RouteData, context.Controller);

 }

 private void Log(string methodName, RouteData routeData, Object controller)

 {

 var controllerName = routeData.Values["controller"];

 var actionName = routeData.Values["action"];

 var message = String.Format("{0} controller:{1} action:{2}",

 methodName, controllerName, actionName);

 BaseController baseController = ((BaseController)controller);

 baseController.Logger.LogInformation(LoggingEvents.ACCESS_METHOD, message);

 }

}

In this project, we also have ResilientHttpClient that we learned in Chapter 7, Securing and
Implementing Resilience in .NET Core Applications.

Developing an identity service
for user authorization
In ASP.NET Core, we have a choice of authenticating applications from various
authentication providers. In microservices architecture, services are deployed and
hosted separately in different containers. We can use ASP.NET Core Identity and add
it as middleware in the service itself, or we can use IdentityServer and develop a
central authentication server to perform authentication and authorization centrally,
access all the services that are registered with the Central Authentication Server
(CAS), and access protected resources by passing tokens.

The identity service basically acts as a CAS that registers all the services in the
enterprise. When the request comes to the service, it asks for the token that can be
obtained from the authorization server. Once the token is obtained, it can be used to
access the resource service.

There are various libraries to build the authentication server, which are as follows:

IdentityServer4: IdentityServer4 is an OpenID Connect and OAuth 2.0
framework for ASP.NET Core
OpenIddict: Easy to plug in solution to implement OpenID Connect server in
ASP.NET Core project

ASOS (AspNet.Security.OpenIdConnect.Server): ASOS is an advanced
OpenID Connect server designed to offer a low-level protocol-first approach

We will be using OpenIddict in our identity service.

OpenIddict connect flows
OpenIddict offers various types of flows, including authorization code flow, password
flow, client credentials flow, and others. However, we have used implicit flow in this
chapter.

In implicit flow, the tokens are retrieved through the authorization endpoint by passing
a username and password. All communication is done with the authorization server in
a single round trip. Once the authentication is done, the token is added in the redirect
URI and can be later used by passing in the request header for subsequent requests.
The following diagram depicts how implicit flow works:

Implicit flow is widely used with Single-Page Applications (SPAs). The process
starts when an SPA web application wants to access the protected web API from the
resource server. As the web API is protected, it needs a token to authenticate the
request and validate the caller. To obtain the token (commonly known as a bearer
token), the SPA web app first proceeds to the authorization server and enters the
username and password. After successful authentication, the authorization server
returns the token and appends it to the redirect URI itself. The web application parses
the Uniform Resource Locator (URL) and retrieves the token and further used to
access the protected resources.

Creating the identity service
project
The identity service is an ASP.NET Core web API project. To use OpenIddict
libraries, we have to add an aspnet-contrib reference to our Visual Studio package
sources dialog. To add this source from Visual Studio, click on the NuGet Package
Manager by right-clicking on the project and then hitting the settings button, as shown
in the following screenshot:

Then add the entry of aspnet-contrib with the source as https://www.myget.org/F/aspnet-contrib/a
pi/v3/index.json:

Once this is added, we can now easily add OpenIddict packages from the NuGet
Package Manager window.

Remember to check that the Include prerelease checkbox is selected.

https://www.myget.org/F/aspnet-contrib/api/v3/index.json

The following are the packages that we can add directly to our project file or from the
NuGet Package Manager window in Visual Studio:

<PackageReference Include="AspNet.Security.OAuth.Validation" Version="2.0.0-rc1-final" />

<PackageReference Include="AspNet.Security.OpenIdConnect.Server" Version="2.0.0-rc1-final" />

<PackageReference Include="Microsoft.AspNetCore.Identity" Version="2.0.1" />

<PackageReference Include="Microsoft.AspNetCore.Identity.EntityFrameworkCore" Version="2.0.1" />

<PackageReference Include="Microsoft.VisualStudio.Web.CodeGeneration.Design" Version="2.0.2" />

<PackageReference Include="OpenIddict" Version="2.0.0-rc2-0797" />

<PackageReference Include="OpenIddict.Core" Version="2.0.0-rc2-0797" />

<PackageReference Include="OpenIddict.EntityFrameworkCore" Version="2.0.0-rc2-0797" />

<PackageReference Include="OpenIddict.Models" Version="2.0.0-rc2-0797" />

<PackageReference Include="OpenIddict.Mvc" Version="2.0.0-rc2-0797" />

Add custom UserEntity and UserRole classes

ASP.NET Core Identity contains IdentityUser and IdentityRole classes and uses EF Core
to create a backend database. However, if we want to customize the default tables, we
can do so by inheriting from these base classes.

We will create a Models folder and customize IdentityUser by creating a custom UserEntity
class and adding the following four fields:

public class UserEntity : IdentityUser<Guid>

{

 public int VendorId { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTimeOffset CreatedAt { get; set; }

}

We have added these fields so when a vendor registers, we will keep their first name,
last name, and ID in this table. Next, we add another class, UserRole, which derives from
IdentityRole, and add the parametrized constructor as follows:

public class UserRoleEntity : IdentityRole<Guid>

{

 public UserRoleEntity() : base() { }

 public UserRoleEntity(string roleName) : base(roleName) { }

}

We will add the custom database context class that derives from IdentityDbContext and
specify UserEntity and UserRoleEntity types as follows:

public class BFIdentityContext : IdentityDbContext<UserEntity, UserRoleEntity, Guid>

{

 public BFIdentityContext(Microsoft.EntityFrameworkCore.DbContextOptions options) :

 base(options) { }

}

We can run EF Core migrations to create ASP.NET Identity tables, and we can run
migration using EF CLI tooling. Before running the migration, we add the following
entries in the ConfigureServices method of our Startup class:

public void ConfigureServices(IServiceCollection services)

{

 var connection= Configuration["ConnectionString"];

 services.AddDbContext<BFIdentityContext>(options =>

 {

 // Configure the context to use Microsoft SQL Server.

 options.UseSqlServer(connection);

 });

 services.AddIdentity<UserEntity, UserRole>().AddEntityFrameworkStores<BFIdentityContext>();

 services.AddMvc();

}

You can run the EF migrations from the Visual Studio Package Manager Console
window. To add migration, first run the following command:

Add-Migration Initial

Add-Migration is the command of EF CLI toolset, where Initial is the name of the
migration. Once we run this command, it will add the Migrations folder into our project
and the Initial class containing Up and Down methods to apply or remove changes to the
database. Next, we can run the Update-Database command that loads the Initial class and
apply the changes to the backend database.

Now we add the configuration related to the OpenIddict implicit flow in our Startup
class. Here is the modified ConfigureServices method that adds the OpenIddict implicit
flow:

public void ConfigureServices(IServiceCollection services)

{

 var connection = @"Server=.sqlexpress;Database=FraymsIdentityDB;

 User Id=sa;Password=P@ssw0rd;";

 services.AddDbContext<BFIdentityContext>(options =>

 {

 // Configure the context to use Microsoft SQL Server.

 options.UseSqlServer(connection);

 // Register the entity sets needed by OpenIddict.

 // Note: use the generic overload if you need

 // to replace the default OpenIddict entities.

 options.UseOpenIddict();

 });

 services.AddIdentity<UserEntity, UserRoleEntity>()

 .AddEntityFrameworkStores<BFIdentityContext>();

 // Configure Identity to use the same JWT claims as OpenIddict instead

 // of the legacy WS-Federation claims it uses by default (ClaimTypes),

 // which saves you from doing the mapping in your authorization controller.

 services.Configure<IdentityOptions>(options =>

 {

 options.ClaimsIdentity.UserNameClaimType = OpenIdConnectConstants.Claims.Name;

 options.ClaimsIdentity.UserIdClaimType = OpenIdConnectConstants.Claims.Subject;

 options.ClaimsIdentity.RoleClaimType = OpenIdConnectConstants.Claims.Role;

 });

 // Register the OpenIddict services.

 services.AddOpenIddict(options =>

 {

 // Register the Entity Framework stores.

 options.AddEntityFrameworkCoreStores<BFIdentityContext>();

 // Register the ASP.NET Core MVC binder used by OpenIddict.

 // Note: if you don't call this method, you won't be able to

 // bind OpenIdConnectRequest or OpenIdConnectResponse parameters.

 options.AddMvcBinders();

 // Enable the authorization, logout, userinfo, and introspection endpoints.

 options.EnableAuthorizationEndpoint("/connect/authorize")

 .EnableLogoutEndpoint("/connect/logout")

 .EnableIntrospectionEndpoint("/connect/introspect")

 .EnableUserinfoEndpoint("/api/userinfo");

 // Note: the sample only uses the implicit code flow but you can enable

 // the other flows if you need to support implicit, password or client credentials.

 options.AllowImplicitFlow();

 // During development, you can disable the HTTPS requirement.

 options.DisableHttpsRequirement();

 // Register a new ephemeral key, that is discarded when the application

 // shuts down. Tokens signed using this key are automatically invalidated.

 // This method should only be used during development.

 options.AddEphemeralSigningKey();

 options.UseJsonWebTokens();

 });

 services.AddAuthentication()

 .AddOAuthValidation();

 services.AddCors();

 services.AddMvc();

}

In the preceding method, we first add the UseOpenIddict method in the AddDbContext options
that will create the OpenIddict-related tables in the database. Then, we configure
Identity to use the same JSON Web Tokens (JWT) claims as OpenIddict by setting
the IdentityOptions as follows:

services.Configure<IdentityOptions>(options =>

{

 options.ClaimsIdentity.UserNameClaimType = OpenIdConnectConstants.Claims.Name;

 options.ClaimsIdentity.UserIdClaimType = OpenIdConnectConstants.Claims.Subject;

 options.ClaimsIdentity.RoleClaimType = OpenIdConnectConstants.Claims.Role;

});

Finally, we register the OpenIddict features and specify values by calling the
services.AddOpenIddict method.

Here is the Configure method that first enables Cross-Origin Resource Sharing

(CORS), which allows requests from any header, origin, and method. Then, add
authentication and call the InitializeAsync method to populate the OpenIddict tables
with the application and resources (services) information:

public void Configure(IApplicationBuilder app)

{

 app.UseCors(builder =>

 {

 builder.AllowAnyOrigin();

 builder.AllowAnyHeader();

 builder.AllowAnyMethod();

 });

 app.UseAuthentication();

 app.UseMvcWithDefaultRoute();

 // Seed the database with the sample applications.

 // Note: in a real world application, this step should be part of a setup script.

 InitializeAsync(app.ApplicationServices, CancellationToken.None).GetAwaiter().GetResult();

}

Here is the InitializeAsync method shown as follows:

private async Task InitializeAsync(IServiceProvider services, CancellationToken cancellationToken)

{

 // Create a new service scope to ensure the database context

 // is correctly disposed when this methods returns.

 using (var scope = services.GetRequiredService<IServiceScopeFactory>().CreateScope())

 {

 var context = scope.ServiceProvider.GetRequiredService<BFIdentityContext>();

 await context.Database.EnsureCreatedAsync();

 var manager = scope.ServiceProvider.GetRequiredService

 <OpenIddictApplicationManager<OpenIddictApplication>>();

 if (await manager.FindByClientIdAsync("bfrwebapp", cancellationToken) == null)

 {

 var descriptor = new OpenIddictApplicationDescriptor

 {

 ClientId = "bfrwebapp",

 DisplayName = "Business Frayms web application",

 PostLogoutRedirectUris = { new Uri("http://localhost:8080/signout-oidc") },

 RedirectUris = { new Uri("http://localhost:8080/signin-oidc") }

 };

 await manager.CreateAsync(descriptor, cancellationToken);

 }

 if (await manager.FindByClientIdAsync("vendor-api", cancellationToken) == null)

 {

 var descriptor = new OpenIddictApplicationDescriptor

 {

 ClientId = "vendor-api",

 ClientSecret = "846B62D0-DEF9-4215-A99D-86E6B8DAB342",

 //RedirectUris = { new Uri("http://localhost:12345/api") }

 };

 await manager.CreateAsync(descriptor, cancellationToken);

 }

 }

}

In the preceding method, we have added the following three applications:

bfrwebapp: An ASP.NET Core web application. When the user hits the web
application, it checks whether the user is authenticated based on whether the
token is provided. If the user is not authenticated, it will redirect it to the
authorization server. The user enters the credentials and, with successful
authentication, it will redirect back to the bfrwebapp. The redirect URI specified
within this scope is the URI of bfrwebapp.
vendor-api: A vendor microservice with a unique client secret key.

The preceding configuration is the server-side configuration and we will see what
configuration needs to be added on the client side.

Finally, we will add AuthorizationController under the Controllers folder to implement
endpoints defined for the authorization server in the ConfigureServices method in the
Startup class. Here is the complete code snippet of the AuthorizationController:

public class AuthorizationController : Controller

{

 private readonly IOptions<IdentityOptions> _identityOptions;

 private readonly SignInManager<UserEntity> _signInManager;

 private readonly UserManager<UserEntity> _userManager;

 public AuthorizationController(

 IOptions<IdentityOptions> identityOptions,

 SignInManager<UserEntity> signInManager,

 UserManager<UserEntity> userManager)

 {

 _identityOptions = identityOptions;

 _signInManager = signInManager;

 _userManager = userManager;

 }

 [HttpGet("~/connect/authorize")]

 public async Task<IActionResult> Authorize(OpenIdConnectRequest request)

 {

 Debug.Assert(request.IsAuthorizationRequest(),

 "The OpenIddict binder for ASP.NET Core MVC is not registered. " +

 "Make sure services.AddOpenIddict().AddMvcBinders() is correctly called.");

 if (!User.Identity.IsAuthenticated)

 {

 // If the client application request promptless authentication,

 // return an error indicating that the user is not logged in.

 if (request.HasPrompt(OpenIdConnectConstants.Prompts.None))

 {

 var properties = new AuthenticationProperties(new Dictionary<string, string>

 {

 [OpenIdConnectConstants.Properties.Error] =

 OpenIdConnectConstants.Errors.LoginRequired,

 [OpenIdConnectConstants.Properties.ErrorDescription] =

 "The user is not logged in."

 });

 // Ask OpenIddict to return a login_required error to the client application.

 return Forbid(properties, OpenIdConnectServerDefaults.AuthenticationScheme);

 }

 return Challenge();

 }

 // Retrieve the profile of the logged in user.

 var user = await _userManager.GetUserAsync(User);

 if (user == null)

 {

 return BadRequest(new OpenIdConnectResponse

 {

 Error = OpenIdConnectConstants.Errors.InvalidGrant,

 ErrorDescription = "The username/password couple is invalid."

 });

 }

 // Create a new authentication ticket.

 var ticket = await CreateTicketAsync(request, user);

 // Returning a SignInResult will ask OpenIddict to issue

 the appropriate access/identity tokens.

 return SignIn(ticket.Principal, ticket.Properties, ticket.AuthenticationScheme);

 }

 [HttpGet("~/connect/logout")]

 public async Task<IActionResult> Logout()

 {

 // Ask ASP.NET Core Identity to delete the local and external cookies created

 // when the user agent is redirected from the external identity provider

 // after a successful authentication flow (e.g Google or Facebook).

 await _signInManager.SignOutAsync();

 // Returning a SignOutResult will ask OpenIddict to redirect the user agent

 // to the post_logout_redirect_uri specified by the client application.

 return SignOut(OpenIdConnectServerDefaults.AuthenticationScheme);

 }

 private async Task<AuthenticationTicket> CreateTicketAsync(

 OpenIdConnectRequest request, UserEntity user)

 {

 // Create a new ClaimsPrincipal containing the claims that

 // will be used to create an id_token, a token or a code.

 var principal = await _signInManager.CreateUserPrincipalAsync(user);

 // Create a new authentication ticket holding the user identity.

 var ticket = new AuthenticationTicket(principal,

 new AuthenticationProperties(),

 OpenIdConnectServerDefaults.AuthenticationScheme);

 // Set the list of scopes granted to the client application.

 ticket.SetScopes(new[]

 {

 OpenIdConnectConstants.Scopes.OpenId,

 OpenIdConnectConstants.Scopes.Email,

 OpenIdConnectConstants.Scopes.Profile,

 OpenIddictConstants.Scopes.Roles

 }.Intersect(request.GetScopes()));

 ticket.SetResources("vendor-api");

 // Note: by default, claims are NOT automatically included in

 // the access and identity tokens.

 // To allow OpenIddict to serialize them, you must attach them a destination, that specifies

 // whether they should be included in access tokens, in identity tokens or in both.

 foreach (var claim in ticket.Principal.Claims)

 {

 // Never include the security stamp in the access and

 // identity tokens, as it's a secret value.

 if (claim.Type == _identityOptions.Value.ClaimsIdentity.SecurityStampClaimType)

 {

 continue;

 }

 var destinations = new List<string>

 {

 OpenIdConnectConstants.Destinations.AccessToken

 };

 // Only add the iterated claim to the id_token if

 // the corresponding scope was granted to the client application.

 // The other claims will only be added to the access_token,

 // which is encrypted when using the default format.

 if ((claim.Type == OpenIdConnectConstants.Claims.Name &&

 ticket.HasScope(OpenIdConnectConstants.Scopes.Profile)) ||

 (claim.Type == OpenIdConnectConstants.Claims.Email &&

 ticket.HasScope(OpenIdConnectConstants.Scopes.Email)) ||

 (claim.Type == OpenIdConnectConstants.Claims.Role &&

 ticket.HasScope(OpenIddictConstants.Claims.Roles)))

 {

 destinations.Add(OpenIdConnectConstants.Destinations.IdentityToken);

 }

 claim.SetDestinations(destinations);

 }

 return ticket;

 }

}

AuthorizationController exposes two methods, namely authorize and logout. The authorize
method checks whether the user is authenticated and returns a challenge that shows the
login page, where the user can enter their username and password. Once the correct
credentials are entered and the user is validated from the identity tables, the
authorization server creates a new authentication token and returns it to the client
application based on the redirect URI specified for bfrwebapp. To see the working
example, please refer to the code repository.

Implementing the vendor
service
The vendor service is a web API that exposes a method to perform vendor registration.
This service implements the actual business domain of the vendor system where a
vendor can register. As we learned in the previous section, we can decompose an
application based on business capability or business domain. This service implements
a DDD principle and decomposes based on business domain. It contains the following
three projects:

Vendor.API: An ASP.NET Core Web API project that exposes methods to register a
vendor
Vendor.Domain: .NET Standard 2.0 class library that contains POCO models such
as VendorMaster and VendorDocument, and an IVendorRepository interface to define
methods essential for a vendor domain.
Vendor.Infrastructure: .NET Standard 2.0 class library that contains a VendorRepository
that implements the IVendorRepository interface and a VendorDBContext to perform
database operations.

Creating a vendor domain
Create a new .NET Standard library project and name it Vendor.Domain. We will reference
our Infrastructure project created previously to derive our POCO entities from
the BaseEntity class.

Create a VendorMaster class and derive it from the BaseEntity class. Here is the code
snippet of VendorMaster class:

public class VendorMaster : BaseEntity

{

 [Key]

 public int ID { get; set; }

 public string VendorName { get; set; }

 public string ContractNumber { get; set; }

 public string Email { get; set; }

 public string Title { get; set; }

 public string PrimaryContactPersonName{ get; set; }

 public string PrimaryContactEmail { get; set; }

 public string PrimaryContactNumber { get; set; }

 public string SecondaryContactPersonName { get; set; }

 public string SecondaryContactEmail { get; set; }

 public string SecondaryContactNumber { get; set; }

 public string Website { get; set; }

 public string FaxNumber { get; set; }

 public string AddressLine1 { get; set; }

 public string AddressLine2 { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public string Country { get; set; }

 public List<VendorDocument> VendorDocuments { get; set; }

}

VendorDocument is another POCO class that contains document-related fields. Here is the
code snippet of the VendorDocument class:

public class VendorDocument : BaseEntity

{

 [Key]

 public int ID { get; set; }

 public string DocumentName { get; set; }

 public string DocumentType { get; set; }

 public Byte[] DocumentContent { get; set; }

 public DateTime DocumentExpiry { get; set; }

 public int VendorMasterID { get; set; }

 [ForeignKey("VendorMasterID")]

 public VendorMaster VendorMaster { get; set; }

}

Next, we will add the IVendorRepository interface to expose methods specific to the
vendor domain. Here is the code snippet of the IVendorRepository interface:

public interface IVendorRepository : IRepository<VendorMaster>

{

 VendorMaster Add(VendorMaster vendorMaster);

 void Update(VendorMaster vendorMaster);

 Task<VendorMaster> GetAsync(int vendorID);

 void Add(VendorDocument vendorDocument);

 void Delete(int vendorDocumentID);

}

Creating the vendor
infrastructure
This project is a .NET Standard 2.0 class library project that reference the core
Infrastructure and Vendor.Domain projects. This contains the actual implementation of the
VendorRepository and a database context to connect with the backend SQL Server
database.

Here is the VendorDBContext class that derives from the DbContext class of EF Core and
defines DbSet for the VendorMaster and VendorDocument entities:

public class VendorDBContext : DbContext, IUnitOfWork

{

 public VendorDBContext(DbContextOptions options) : base(options)

 {

 }

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)

 {

 base.OnConfiguring(optionsBuilder);

 // optionsBuilder.UseSqlServer(@"Data Source=.sqlexpress;

 Initial Catalog=FraymsVendorDB;Integrated Security=False; User Id=sa;

 Password=P@ssw0rd; Timeout=500000;");

 }

 protected override void OnModelCreating(ModelBuilder builder)

 {

 base.OnModelCreating(builder);

 }

 public void BeginTransaction()

 {

 this.Database.BeginTransaction();

 }

 public void RollbackTransaction()

 {

 this.Database.RollbackTransaction();

 }

 public void CommitTransaction()

 {

 this.Database.CommitTransaction();

 }

 public Task<bool> SaveChangesAsync()

 {

 return this.SaveChangesAsync();

 }

 public DbSet<VendorMaster> VendorMaster { get; set; }

 public DbSet<VendorDocument> VendorDocuments { get; protected set; }

We will also implement the IUnitOfWork interface, so when the VendorRepository is injected

in a controller, we can perform transaction handling and save the changes to the
associated database in a single call.

Here is the VendorRepository that implements the IVendorRepository interface:

public class VendorRepository : IVendorRepository

{

 VendorDBContext _dbContext;

 public VendorRepository(VendorDBContext dbContext)

 {

 this._dbContext = dbContext;

 }

 public IUnitOfWork UnitOfWork

 {

 get

 {

 return _dbContext;

 }

 }

 public VendorMaster Add(VendorMaster vendorMaster)

 {

 var res= _dbContext.Add(vendorMaster);

 return res.Entity;

 }

 public void AddDocument(VendorDocument vendorDocument)

 {

 var res = _dbContext.Add(vendorDocument);

 }

 public void Update(VendorMaster vendorMaster)

 {

 _dbContext.Entry(vendorMaster).State = Microsoft.EntityFrameworkCore.EntityState.Modified;

 }

 public async Task<VendorMaster> GetAsync(int vendorID)

 {

 var vendorMaster = await _dbContext.VendorMaster.FindAsync(vendorID);

 if (vendorMaster != null)

 {

 await _dbContext.Entry(vendorMaster)

 .Collection(i => i.VendorDocuments).LoadAsync();

 }

 return vendorMaster;

 }

 public IQueryable<T> All<T>() where T : BaseEntity

 {

 return _dbContext.Set<T>().AsQueryable();

 }

 public bool Contains<T>(Expression<Func<T, bool>> predicate) where T : BaseEntity

 {

 return _dbContext.Set<T>().Count<T>(predicate) > 0;

 }

 public T Find<T>(Expression<Func<T, bool>> predicate) where T : BaseEntity

 {

 return _dbContext.Set<T>().FirstOrDefault<T>(predicate);

 }

}

Creating the vendor service
We will now create a vendor-service project that will expose methods for use by client
applications to register a vendor. To start with, let's create a new ASP.NET Core web
API project and name it Vendor.API.

Implementing the mediator
pattern in the vendor service
In microservices architecture, an application is split into multiple services, where each
service connects to the other services through an endpoint. There are possibilities that
one service may invoke or interact with multiple services when the event is invoked.
Segregating the interaction between services is always a recommended approach and
solves tight dependencies on other services. For example, an application invokes this
service to register a vendor and then invoke the identity service to create its user
account and send an email by calling the messaging service. We can implement the
mediator pattern to solve this scenario.

The mediator pattern is based on the event-driven topology that works as a
publisher/subscriber model. When any event is invoked, the registered handlers are
called and execute the underlying logic. This encapsulates the logic of how services
interact with one another, keeping the actual logic separate for each interaction.
Moreover, the code is clean and easy to change.

In Vendor.API, we will implement the mediator pattern using the MediatR library of .NET.
MediatR is the implementation of the mediator pattern that supports command handling
and domain event publishing. In the following section, we will implement mediator
when the user registers and invoke the identity service to create a new user and send an
email.

To use MediatR, we have to add the following two packages:

MediatR

MediatR.Extensions.Microsoft.DependencyInjection

After adding these packages, we can add it in the ConfigureServices method by calling
the services.AddMediatR method. MediatR provides the following two types of messages:

Request/response: Requests are commands that may or may not return a value
Notification: Notifications are events that may not return a value

In our example, we will implement both request/response to save a vendor record into
a database and, once it returns Boolean true as a response, we will invoke notification
events to create a vendor user and send an email.

To implement request/response, we should define a class that implements the interface
of IRequestHandleror IRequestHandlet<TRequest, TResponse>, where TRequest is the request object
type and TResponse is the response object type.

Create a class CreateVendorCommand under the Commands folder in your Vendor.API project. Here
is the code snippet of CreateVendorCommand:

public class CreateVendorCommand : IRequest<bool>

{

 [DataMember]

 public VendorViewModel VendorViewModel { get; set; }

 public CreateVendorCommand(VendorViewModel vendorViewModel)

 {

 VendorViewModel = vendorViewModel;

 }

}

It implements the IRequest class that returns a Boolean value as a response. We have
also specified our VendorViewModel that will be injected by the MediatR library when we
pass them while calling the send method in the VendorController class.

Next, we will create a command handler that implements the generic
IRequestHandler<TRequest,TResponse>, where TRequest is the CreateVendorCommand and TResponse
will be a Boolean type. Here is the code snippet of CreateVendorCommandHandler:

public class CreateVendorCommandHandler : IRequestHandler<CreateVendorCommand, bool>

{

 private readonly IVendorRepository _vendorRepository;

 public CreateVendorCommandHandler(IVendorRepository vendorRepository)

 {

 _vendorRepository = vendorRepository;

 }

 public async Task<bool> Handle(CreateVendorCommand command,

 CancellationToken cancellationToken)

 {

 _vendorRepository.UnitOfWork.BeginTransaction();

 try

 {

 _vendorRepository.Add(command.VendorMaster);

 _vendorRepository.UnitOfWork.CommitTransaction();

 }catch(Exception ex)

 {

 _vendorRepository.UnitOfWork.RollbackTransaction();

 }

 return await _vendorRepository.UnitOfWork.SaveChangesAsync(); }

}

When this handler is invoked, it will call the Handle method and pass the command and
the cancellation token. From the command object, we can get the object we have
passed while calling the Send method of the IMediator object in the VendorController class.

This method calls the Add method of the VendorRepository and saves the information into
the database. With the request/response approach, only one command handler is
executed even if you have multiple handlers defined for the command. To call all the
handlers, we can use notifications. We will extend the preceding example and add
notification events and corresponding handlers that will be invoked once the command
is executed successfully.

First, we define the notification event by creating a class and implementing the
INotification interface. Here is the code snippet of the CreateVendorNotification event that
will be used by the notification handlers:

public class CreateVendorNotification : INotification

{

 public VendorMaster _vendorVM;

 public CreateVendorNotification(VendorMaster vendorVM)

 {

 _vendorVM = vendorVM;

 }

}

Here is the implementation of CreateUserHandler, which listens for the
CreateVendorNotification event to be raised. Once the event is raised, it is invoked and
executes the logic defined in the Handle method. We use CreateUserHandler to create a user
in the ASP.NET Core Identity database by calling the identity service. Here is the code
snippet of CreateUserHandler:

public class CreateUserHandler : INotificationHandler<CreateVendorNotification>

{

 IResilientHttpClient _client;

 public CreateUserHandler(IResilientHttpClient client)

 {

 _client = client;

 }

 public Task Handle(CreateVendorNotification notification, CancellationToken cancellationToken)

 {

 string uri = "http://businessfrayms.com/api/Identity";

 string token = "";//read token from user session

 var response = _client.Post<VendorMaster>(uri, notification._vendorVM,"");

 return Task.FromResult(0);

 }

}

Next, we will create a SendEmailHandler that listens for the CreateVendorNotification and
sends an email notification to the vendor about registration. Here is the code snippet of
SendEmailHandler:

public class SendEmailHandler : INotificationHandler<CreateVendorNotification>

{

 MessagingService _service;

 public SendEmailHandler(MessagingService service) : base()

 {

 _service = service;

 }

 public Task Handle(CreateVendorNotification notification, CancellationToken cancellationToken)

 {

 _service.SendEmail(notification._vendorVM.Email, "Registration",

 "Thankyou for registration");

 return Task.FromResult(0);

 }

}

We can add more notification handlers based on the requirements. For example, if we
want to initiate a workflow notification once the vendor record is saved into the
database, we can create a vendor workflow notification handler, and so on.

From the VendorController side, we can invoke the mediator pattern by calling the Send
and Publish methods. The Send method invokes command handlers and Publish is used to
invoke notification handlers. Here is the code snippet of VendorController:

[Produces("application/json")]

[Route("api/Vendor")]

public class VendorController : BaseController

{

 private readonly IMediator _mediator;

 private ILogger _logger;

 public VendorController(IMediator mediator, ILogger logger) : base(logger)

 {

 _mediator = mediator;

 _logger = logger;

 }

 [Authorize(AuthenticationSchemes = OAuthIntrospectionDefaults.AuthenticationScheme)]

 // POST: api/VendorMaster

 [HttpPost]

 public void Post([FromBody]VendorMaster value)

 {

 try

 {

 bool result = _mediator.Send(new CreateVendorCommand(value)).Result;

 if (result)

 {

 //Record saved succesfully, publishing event now

 _mediator.Publish(new CreateVendorNotification(value));

 }

 }

 catch (Exception ex)

 {

 _logger.LogError(ex.Message);

 }

 }

}

In the preceding code, we have a Post method that will be called by the client
application to create a new vendor. It first calls the Send method, which invokes the
CreateVendorCommandHandler and saves the record in the database, and, once the record is
created and the response is true, it will invoke the SendEmailHandler to send an email.

You can access the complete sample application from the GitHub link provided with the book.

Deploying microservices on
Docker containers
Microservices are best suited for containerization deployment. A container is a process
that provides an isolated and controlled environment for an application to run without
affecting the system or vice versa. Most of us have experienced hosting applications
inside VMs, which provide an isolated space to install, configure, and run applications
and use the dedicated resources without affecting the underlying system or application.
In contrast to VMs, containers provide the same level of isolation but are more
lightweight in terms of startup time and overhead. Unlike VMs, containers do not
preallocate resources such as memory, disk, and CPU usage. We can run multiple
containers on the same machine, where the containers are isolated from each other but
share the memory, disk, and CPU usage. This enables any application running in a
container to use the maximum resources available without having any preallocated or
assigned.

The following diagram depicts how VMs run on the host OS:

We run applications on the host OS and VMs on a guest OS. The virtualization is done
at the hardware level, where VMs can talk to the host hardware using drivers available
in the hypervisor virtualization system, as provided by the host OS.

Here is how containers run on the host OS:

With containers, the kernel is shared between multiple containers. The kernel is a core
component of the operating system that is responsible for interacting with different
processes and hardware, and manages resources such as CPU cycles and virtual
management. The kernel is the component that creates isolation between different
containers.

What is Docker?
Docker is a software company that provides containers. Docker containers are very
popular in the software industry to run microservices. They are best suited to
microservices application development and provide a set of command-line tools that
provide a unified way of building and maintaining different container images. We can
create custom images or use existing ones from a registry such as Docker Hub (http://hu
b.docker.com).

Here are a few benefits of Docker:

Benefit Description

Simplicity Provides a powerful tool for application creation and orchestration

Openness Built with open source technology and easy to integrate into
existing environments

Independence Creates separation of concerns between application and
infrastructure

http://hub.docker.com

Using Docker with .NET Core
.NET Core is modular and faster when compared to the .NET framework and helps in
running applications side by side, where each application is running its own set of
CLR libraries and runtime. This makes it perfect for running on Docker containers.
The image of .NET Core is far smaller when compared to the image having .NET
framework installed. .NET Core uses a Windows Nano server or Linux image, which
is a lot smaller than the Windows service core image. As .NET Core runs cross-
platform, we can also create Docker images of other platforms and run applications on
them.

With Visual Studio 2017, we can choose Docker while creating a .NET Core or
ASP.NET Core project, and it auto scaffolds the Docker files and sets up the basic
configuration to run applications on Docker. The following screenshot shows the
Docker options available in Visual Studio 2017 to provision Docker containers:

Alternatively, if the project is already created, we can add Docker support by right-
clicking on the .NET Core project and clicking on the Add | Docker Support option.

Once we create or enable Docker support in our application, it creates the Docker files

in our project and also adds another project, named docker-compose, as follows:

The docker-compose project contains set of YAML (.yml) files that contain the
configuration related to the application hosted in the container and a reference to the
path of the Dockerfile created for the project when Docker support was added. Here is
the sample docker-compose.yml file that contains two services having details such as the
image name, dockerfile path, and so on. This file is from the sample application we
discussed previously:

version: '1'

services:

 vendor.api:

 image: vendor.api

 build:

 context: .

 dockerfile: srcmicroservicesVendorVendor.APIDockerfile

 identity.api:

 image: identity.api

 build:

 context: .

 dockerfile: srcmicroservicesAuthServerIdentity.AuthServerDockerfile

The following is the content of the Dockerfile residing inside the Vendor.API project we
created in the sample application above:

FROM microsoft/aspnetcore:2.0-nanoserver-1709 AS base

WORKDIR /app

EXPOSE 80

FROM microsoft/aspnetcore-build:2.0-nanoserver-1709 AS build

WORKDIR /src

COPY *.sln ./

COPY src/microservices/Vendor/Vendor.API/Vendor.API.csproj src/microservices/Vendor/Vendor.API/

RUN dotnet restore

COPY . .

WORKDIR /src/src/microservices/Vendor/Vendor.API

RUN dotnet build -c Release -o /app

FROM build AS publish

RUN dotnet publish -c Release -o /app

FROM base AS final

WORKDIR /app

COPY --from=publish /app .

ENTRYPOINT ["dotnet", "Vendor.API.dll"]

The preceding Dockerfile starts referencing a base image microsoft/aspnetcore:2.0-
nanoserver-1709 that will be used to create a Docker container. The COPY command is the
actual path where the project files reside. It will then use dotnet CLI commands such

as dotnet restore to restore all the NuGet packages inside the container, dotnet build to
build the application, and dotnet publish to build and publishes the compiled output into
a publish folder inside the container.

Running Docker images
We can run Docker images either from the command line or from Visual Studio
directly. As we saw in the previous section, a new docker-compose project is created on
adding Docker support into our project. Running the docker-compose project reads the
docker-compose YAML file and hooks up containers for the services defined. Docker is a
first-class citizen in Visual Studio. It not only supports running the Docker containers
but fully-fledged debugging capabilities are also provided.

Alternatively, from the command line, we can run Docker containers by going to the
root path where the docker-compose.yml file resides and running the following command:

docker-compose up

Once the containers are up, each application has its own IP assigned at runtime. To
inspect the actual IP of each service running on a separate container, we can run the
docker inspect command to retrieve it. However, the docker inspect command requires the
container ID as a parameter. To get the list of the containers running, we can first call
the docker ps command as follows:

docker ps

The preceding command displays the list of containers as shown in the following
screenshot:

Finally, we can use the container ID and execute docker inspect command to get its IP
address as follows:

docker inspect -f "{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}" containerid

The preceding command displays the IP address as follows:

Summary
In this chapter, we learned about the microservices architecture for developing highly
performant and scalable applications for the cloud-based on microservices. We learned
some of the fundamentals of microservices, their benefits, and patterns and practices
used when designing the architecture. We discussed certain challenges in decomposing
the enterprise applications into the microservices architecture style and learned
patterns such as API composition and CQRS to address them. Later in the chapter, we
developed a basic application in .NET Core and discussed the solution structure and
components of microservices, and developed identity and vendor services.

In the next chapter, we will discuss securing and implementing resilience in .NET
Core applications.

Monitoring Application
Performance Using Tools
Monitoring application performance is a general process in big organizations to
continuously monitor and improve the application experience for their customers. This
is an important factor that revolves around different tools and techniques to measure
the application performance and make decisions quickly.

In this chapter, we will learn some key indicators that are recommended to monitor the
.NET Core application as well as explore App Metrics to get the real-time analytics
and telemetry information about the key indicators.

In this chapter, we will look at the following topics:

Key metrics to monitor application performance
Tools and techniques to measure application performance, which includes:

Exploring App Metrics

Setting up App Metrics used with ASP.NET Core applications

Setting up Grafana and using the App Metrics dashboard

Setting up the InfluxDB database and integrating it with the ASP.NET Core
application

Monitoring performance through the Grafana website

To learn more about App Metrics or to contribute to the open source project, you can access the GitHub
repository from the following link and see the complete documentation with some examples: https://github.com/Ap
pMetrics/AppMetrics.

https://github.com/AppMetrics/AppMetrics

Application performance key
metrics
The following are some key metrics to be considered for web-based applications.

Average response time
In every web application, response time is the key metric to be considered when
monitoring application performance. Response time is the total time taken by the
server to process the request. It is a time which is calculated when the request is
received by the server which the time server then takes to process it and return a
response. It can be affected by network latency, active users, the number of active
requests, and CPU and memory usage on the server. The average response time is the
total average time of all the requests being processed by the server at a particular time.

Apdex scores
Apdex is a user satisfaction score that can be categorized based on the performance of
the application. The Apdex score can be categorized as satisfactory, tolerating, or
frustrating.

Percentage of errors
This is the total percentage of the errors being reported in a particular amount of time.
The user gets an overview of the total percentage of errors the user came across and
can rectify them immediately.

Request rate
The request rate is a valuable metric used for scaling applications. If the request rate is
high and the application's performance is not good, the application can be scaled out to
support that number of requests. On the other hand, if the request rate is very low, that
means there is an issue or that the number of active users are depleting and they are not
using the application. In both cases, the decision can be taken abruptly to provide a
consistent user experience.

Throughput/endpoints
Throughput is the number of requests the application can handle for a given amount of
time. Usually, in commercial applications, the number of requests are pretty high and
throughput allows you to benchmark the number of responses the application can
handle without affecting the performance.

CPU and memory usage
CPU and memory usage is another important metric, which is used to analyse the peak
hours where CPU or memory usage was high so that you can investigate the root
cause.

Tools and techniques to measure
performance
There are various tools available on the market that can be used to measure and
monitor application performance. In this section, we will focus on App Metrics and
analyse HTTP traffic, errors, and network performance.

Introducing App Metrics
App Metrics is an open source tool that can be plug in with the ASP.NET Core
applications. It provides real-time insights about how the application is performing and
provides a complete overview of the application's health status. It provides metrics in a
JSON format and integrates with the Grafana dashboards for visual reporting. App
Metrics is based on .NET Standard and runs cross-platform. It provides various
extensions and reporting dashboards that can run on Windows and Linux operating
system as well.

Setting up App Metrics with
ASP.NET Core
We can set up App Metrics in the ASP.NET Core application in three easy steps,
which are as follows:

1. Install App Metrics.

App Metrics can be installed as NuGet packages. Here are the two packages
that can be added through NuGet in your .NET Core project:

 Install-Package App.Metrics

 Install-Pacakge App.Metrics.AspnetCore.Mvc

2. Add App Metrics in Program.cs.

Add UseMetrics to Program.cs in the BuildWebHost method, as follows:

 public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseMetrics()

 .UseStartup<Startup>()

 .Build();

3. Add App Metrics in Startup.cs.

Finally, we can add a metrics resource filter in the ConfigureServices method of
the Startup class as follows:

 public void ConfigureServices(IServiceCollection services)

 {

 services.AddMvc(options => options.AddMetricsResourceFilter());

 }

4. Run your application.

Build and run the application. We can test whether App Metrics is running well
by using URLs, as shown in the following table. Just append the URL to the
application's root URL:

URL Description

/metrics Shows metrics using the configured metrics formatter

/metrics-

text Shows metrics using the configured text formatter

/env
Shows environment information, which includes the operating system,
machine name, assembly name, and version

Appending /metrics or /metrics-text to the application's root URL gives complete
information about application metrics. /metrics returns the JSON response that can be
parsed and represented in a view with some custom parsing.

Tracking middleware
With App Metrics, we can manually define the typical web metrics which are essential
to record telemetry information. However, for ASP.NET Core, there is a tracking
middleware that can be used and configured in the project, which contains some built-
in key metrics which are specific to the web application.

Metrics that are recorded by the Tracking middleware are as follows:

Apdex: This is used to monitor the user's satisfaction based on the overall
performance of the application. Apdex is an open industry standard that measures
the user's satisfaction based on the application's response time.

We can configure the threshold of time, T, for each request cycle, and the
metrics are calculated based on following conditions:

User
Satisfaction Description

Satisfactory If the response time is less than or equal to the threshold time (T)

Tolerating If the response time is between the threshold time (T) and 4 times
that of the threshold time (T) in seconds

Frustrating
If the respo

nse time is greater than 4 times that of the threshold time (T)

Response times: This provides the overall throughput of the request being
processed by the application and the duration it takes per route within the
application.

Active requests: This provides the list of active requests which have been
received on the server in a particular amount of time.

Errors: This provides the aggregated results of errors in a percentage that
includes the overall error request rate, the overall count of each uncaught
exception type, the total number of error requests per HTTP status code, and so
on.

POST and PUT sizes: This provides the request sizes for HTTP POST and PUT
requests.

Adding tracking middleware
We can add tracking middleware as a NuGet package as follows:

Install-Package App.Metrics.AspNetCore.Tracking

Tracking middleware provides a set of middleware that is added to record telemetry
for the specific metric. We can add the following middleware in the Configure method to
measure performance metrics:

app.UseMetricsApdexTrackingMiddleware();

app.UseMetricsRequestTrackingMiddleware();

app.UseMetricsErrorTrackingMiddleware();

app.UseMetricsActiveRequestMiddleware();

app.UseMetricsPostAndPutSizeTrackingMiddleware();

app.UseMetricsOAuth2TrackingMiddleware();

Alternatively, we can also use meta-pack middleware, which adds all the available
tracking middleware so that we have information about all the different metrics which
are in the preceding code:

app.UseMetricsAllMiddleware();

Next, we will add tracking middleware in our ConfigureServices method as follows:

services.AddMetricsTrackingMiddleware();

In the main Program.cs class, we will modify the BuildWebHost method and add
the UseMetricsWebTracking method as follows:

public static IWebHost BuildWebHost(string[] args) =>

 WebHost.CreateDefaultBuilder(args)

 .UseMetrics()

 .UseMetricsWebTracking()

 .UseStartup<Startup>()

 .Build();

Setting up configuration
Once the middleware is added, we need to set up the default threshold and other
configuration values so that reporting can be generated accordingly. The web tracking
properties can be configured in the appsettings.json file. Here is the content of
the appsettings.json file that contains the MetricWebTrackingOptions JSON key:

"MetricsWebTrackingOptions": {

 "ApdexTrackingEnabled": true,

 "ApdexTSeconds": 0.1,

 "IgnoredHttpStatusCodes": [404],

 "IgnoredRoutesRegexPatterns": [],

 "OAuth2TrackingEnabled": true

 },

ApdexTrackingEnabled is set to true so that the customer satisfaction report will be
generated, and ApdexTSeconds is the threshold that decides whether the request response
time was satisfactory, tolerating, or frustrating. IgnoredHttpStatusCodes contains the list of
status codes that will be ignored if the response returns a 404 status.
IgnoredRoutesRegexPatterns are used to ignore specific URIs that match the regular
expression, and OAuth2TrackingEnabled can be set to monitor and record the metrics for
each client and provide information specific to the request rate, error rate, and POST
and PUT sizes for each client.

Run the application and do some navigation. Appending /metrics-text in your
application URL will display the complete report in textual format. Here is the sample
snapshot of what textual metrics looks like:

Adding visual reports
There are various extensions and reporting plugins available that provide a visual
reporting dashboard. Some of them are GrafanaCloud Hosted Metrics, InfluxDB,
Prometheus, ElasticSearch, Graphite, HTTP, Console, and Text File. In this chapter,
we will configure the InfluxDB extension and see how visual reporting can be
achieved.

Setting up InfluxDB
InfluxDB is the open source time series database developed by Influx Data. It is
written in the Go language and is widely used to store time series data for real-time
analytics. Grafana is the server that provides reporting dashboards that can be viewed
through a browser. InfluxDB can easily be imported as an extension in Grafana to
display visual reporting from the InfluxDB database.

Setting up the Windows
subsystem for Linux
In this section, we will set up InfluxDB on the Windows subsystem for the Linux
operating system.

1. First of all, we need to enable the Windows subsystem for Linux by executing the
following command from the PowerShell as an Administrator:

 Enable-WindowsOptionalFeature -Online -FeatureName

 Microsoft-Windows-Subsystem-Linux

After running the preceding command, restart your computer.

2. Next, we will install Linux distro from the Microsoft store. In our case, we will
install Ubuntu from the Microsoft Store. Go to the Microsoft Store, search for
Ubuntu, and install it.

3. Once the installation is done, click on Launch:

4. This will open up the console window, which will ask you to create a user
account for Linux OS (Operating System).

5. Specify the username and password that will be used.
6. Run the following command to update Ubuntu to the latest stable version from

the bash shell. To run bash, open the command prompt, write bash, and hit Enter:

7. Finally, it will ask you to create an Ubuntu username and password. Specify the
username and password and hit enter.

Installing InfluxDB
Here, we will go through some steps to install the InfluxDB database in Ubuntu:

1. To set up InfluxDB, open a command prompt in Administrator mode and run the
bash shell.

2. Execute the following commands to the InfluxDB data store on your local PC:

 $ curl -sL https://repos.influxdata.com/influxdb.key | sudo apt-key add -

 $ source /etc/lsb-release

 $ echo "deb https://repos.influxdata.com/${DISTRIB_ID,,}

 $ {DISTRIB_CODENAME} stable" | sudo tee /etc/apt/sources.list.d/influxdb.list

3. Install InfluxDB by executing the following command:

 $ sudo apt-get update && sudo apt-get install influxdb

4. Execute the following command to run InfluxDB:

 $ sudo influxd

5. Start the InfluxDB shell by running the following command:

 $ sudo influx

It will open up the shell where database-specific commands can be executed.

6. Create a database by executing the following command. Specify a meaningful
name for the database. In our case, it is appmetricsdb:

 > create database appmetricsdb

Installing Grafana
Grafana is an open source tool used to display dashboards in a web interface. There are
various dashboards available that can be imported from the Grafana website to display
real-time analytics. Grafana can simply be downloaded as a zip file from http://docs.graf
ana.org/installation/windows/. Once it is downloaded, we can start the Grafana server by
clicking on the grafana-server.exe executable from the bin directory.

Grafana provides a website that listens on port 3000. If the Grafana server is running,
we can access the site by navigating to http://localhost:3000.

http://docs.grafana.org/installation/windows/

Adding the InfluxDB dashboard
There is an out-of-the-box InfluxDB dashboard available in Grafana which can be
imported from the following link: https://grafana.com/dashboards/2125.

Copy the dashboard ID and use this to import it into the Grafana website.

We can import the InfluxDB dashboard by going to the Manage option on the Grafana
website, as follows:

From the Manage option, click on the + Dashboard button and hit the New Dashboard
option. Clicking on Import Dashboard will lead to Grafana asking you for the
dashboard ID:

Paste the dashboard ID (for example, 2125) copied earlier into the box and hit Tab. The
system will show the dashboard's details, and clicking on the Import button will import
it into the system:

https://grafana.com/dashboards/2125

Configuring InfluxDB
We will now configure the InfluxDB dashboard and add a data source that connects to
the database that we just created.

To proceed, we will go to the Data Sources section on the Grafana website and click
on the Add New Datasource option. Here is the configuration that adds the data source
for the InfluxDB database:

Modifying the Configure and
ConfigureServices methods in
Startup
Up to now, we have set up Ubuntu and the InfluxDB database on our machine. We
also set up the InfluxDB data source and added a dashboard through the Grafana
website. Next, we will configure our ASP.NET Core web application to push real-time
information to the InfluxDB database.

Here is the modified ConfigureServices method that initializes the MetricsBuilder to define
the attribute related to the application name, environment, and connection details:

public void ConfigureServices(IServiceCollection services)

{

 var metrics = new MetricsBuilder()

 .Configuration.Configure(

 options =>

 {

 options.WithGlobalTags((globalTags, info) =>

 {

 globalTags.Add("app", info.EntryAssemblyName);

 globalTags.Add("env", "stage");

 });

 })

 .Report.ToInfluxDb(

 options =>

 {

 options.InfluxDb.BaseUri = new Uri("http://127.0.0.1:8086");

 options.InfluxDb.Database = "appmetricsdb";

 options.HttpPolicy.Timeout = TimeSpan.FromSeconds(10);

 })

 .Build();

 services.AddMetrics(metrics);

 services.AddMetricsReportScheduler();

 services.AddMetricsTrackingMiddleware();

 services.AddMvc(options => options.AddMetricsResourceFilter());

}

In the preceding code, we have set the application name app as the assembly name, and
the environment env as the stage. http://127.0.0.1:8086 is the URL of the InfluxDB server
that listens for the telemetry being pushed by the application. appmetricsdb is the
database that we created in the preceding section. Then, we added the AddMetrics
middleware and specified the metrics containing the configuration.
AddMetricsTrackingMiddleware is used to track the web telemetry information which is
displayed on the dashboard, and AddMetricsReportScheduled is used to push the telemetry
information to the database.

Here is the Configure method that contains UseMetricsAllMiddleware to use App Metrics.
UseMetricsAllMiddleware adds all the middleware available in App Metrics:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseBrowserLink();

 app.UseDeveloperExceptionPage();

 }

 else

 {

 app.UseExceptionHandler("/Error");

 }

 app.UseStaticFiles();

 app.UseMetricsAllMiddleware();

 app.UseMvc();

}

Rather than calling UseAllMetricsMiddleware, we can also add individual middleware
explicitly based on the requirements. Here is the list of middleware that can be added:

app.UseMetricsApdexTrackingMiddleware();

app.UseMetricsRequestTrackingMiddleware();

app.UseMetricsErrorTrackingMiddleware();

app.UseMetricsActiveRequestMiddleware();

app.UseMetricsPostAndPutSizeTrackingMiddleware();

app.UseMetricsOAuth2TrackingMiddleware();

Testing the ASP.NET Core App
and reporting on the Grafana
dashboard
To test the ASP.NET Core application and to see visual reporting on the Grafana
dashboard, we will go through following steps:

1. Start the Grafana server by going to {installation_directory}\bin\grafana-server.exe.
2. Start bash from the command prompt and run the sudo influx command.
3. Start another bash from the command prompt and run the sudo influx command.
4. Run the ASP.NET Core application.
5. Access http://localhost:3000 and click on the App Metrics dashboard.
6. This will start gathering telemetry information and will display the performance

metrics, as shown in the following screenshots:

The following graph shows the total throughput in Request Per Minute
(RPM), error percentage, and active requests:

Here is the Apdex score colorizing the user satisfaction into three different colors,
where red is frustrating, orange is tolerating, and green is satisfactory. The following
graph shows the blue line being drawn on the green bar, which means that the
application performance is satisfactory:

The following snapshot shows the throughput graph for all the requests being made,
and each request has been colorized with the different colors: red, orange, and green.
In this case, there are two HTTP GET requests for the about and contact us pages:

Here is the response time graph showing the response time of both requests:

Summary
In this chapter, we have learned some key metrics which are essential for monitoring
application performance. We explored and set up App Metrics, which is a free tool that
runs cross-platform and provides a lot of extensions that can be added to achieve more
reporting. We went through the step-by-step guide on how to configure and set up App
Metrics and related components like InfluxDb and Grafana to store and view telemetry
in the Grafana web-based tool and integrate it with ASP.NET Core application.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Dependency Injection in .NET Core 2.0
Marino Posadas, Tadit Dash

ISBN: 978-1-78712-130-0

Understand the concept of DI and its implications in modern software
construction
Learn how DI is already implemented in today's frameworks.
Analyze how DI can be used with current software to improve maintainability
and scalability.
Learn the use of DI in .NET Core
Get used to the possibilities that DI offers the ASP.NET Core developer in
different scenarios.
Learn about good practices and refactoring legacy code.

Mastering ASP.NET Core 2.0
Ricardo Peres

ISBN: 978-1-78728-368-8

Get to know the new features of ASP.NET Core 2.0
Find out how to configure ASP.NET Core

https://www.packtpub.com/application-development/dependency-injection-net-core-20

Configure routes to access ASP.NET Core resources
Create controllers and action methods and see how to maintain the state
Create views to display contents
Implement and validate forms and retrieve information from them
Write reusable modules for ASP.NET Core
Deploy ASP.NET Core to other environments

Leave a review - let other
readers know what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Table of Contents

Title Page 2
Copyright and Credits 3

C# 7 and .NET Core 2.0 High Performance 4
Packt Upsell 5

Why subscribe? 6
PacktPub.com 7

Contributors 8
About the author 9
About the reviewer 10
Packt is searching for authors like you 11

Preface 18
Who this book is for 19
What this book covers 20
To get the most out of this book 22

Download the example code files 23
Download the color images 24
Conventions used 25

Get in touch 26
Reviews 27

What's New in .NET Core 2 and C# 7? 28
Evolution of .NET 29
New improvements in .NET Core 2.0 32

Performance improvements 33
RyuJIT compiler in .NET Core 34
Profile guided optimization 35

Simplified packaging 36
Upgrading path from .NET Core 1.x to 2.0 37

1. Install .NET Core 2.0 38
2. Upgrade TargetFramework 39
3. Update .NET Core SDK version 40
4. Update .NET Core CLI 41
Changes in ASP.NET Core Identity 42

Exploring .NET Core CLI and New Project Templates 43
Understanding .NET Standard 49

Versioning of .NET Standard 53
New improvements in .NET Standard 2.0 54

More APIs in .NET Standard 2.0 55
Compatibility mode 56

Creating a .NET Standard library 58
What comes with ASP.NET Core 2.0 59

ASP.NET Core Razor Pages 60
Automatic Page and View compilation on publishing 61
Razor support for C# 7.1 62

Simplified configuration for Application Insights 63
Pooling connections in Entity Framework Core 2.0 64

New features in C# 7.0 65
Tuples 66
Patterns 67

Constant pattern 68
Type pattern 69
Var pattern 70

Reference returns 71
Expression bodied member extended 72
Creating Local Functions 73
Out variables 74
Async Main 75

Writing quality code 77
Summary 81

Understanding .NET Core Internals and Measuring Performance 82
.NET Core internals 83

CoreFX 84
CoreCLR 85
Understanding MSIL, CLI, CTS, and CLS 86
How the CLR works 88
From compilation to execution – Under the hood 89
Garbage collection 90

Generations in GC 92
.NET Native and JIT compilation 94

Utilizing multiple cores of the CPU for high performance 95
How releasing builds increases performance 97
Benchmarking .NET Core 2.0 applications 99

Exploring BenchmarkDotNet 100

How it works 103

Setting parameters 104
Memory diagnostics using BenchmarkDotnet 106
Adding configurations 107

Summary 109
Multithreading and Asynchronous Programming in .NET Core 110

Multithreading versus asynchronous programming 111
Multithreading in .NET Core 113

Multithreading caveats 114
Threads in .NET Core 115

Creating threads in .NET Core 116
Thread lifetime 118
The thread pool in .NET 119

Thread synchronization 120
Monitors 122

Task parallel library (TPL) 126
Creating a task using TPL 127
Task-based asynchronous pattern (TAP) 128

Naming convention 129
Return type 130
Parameters 131
Exceptions 132
Task status 133
Task cancellation 134
Task progress reporting 135

Implementing TAP using compilers 136
Implementing TAP with greater control over Task 137

Design patterns for parallel programming 139
Pipeline pattern 140
Dataflow pattern 142
Producer/consumer pattern 144
Parallel.ForEach 146
Parallel LINQ (PLINQ) 147

Summary 148
Data Structures and Writing Optimized Code in C# 149

What are data structures? 150
Understanding the use of Big O notation to measure the performance and

complexity of an algorithm 154

Logarithms 156

Choosing the right data structure for performance optimization 157
Arrays 158
Lists 160
Stacks 162
Queue 164
Linked lists 166

Singly linked lists 167
Doubly linked lists 168
Circular linked lists 169

Dictionaries, hashtables, and hashsets 171
Generic lists 172

Best practices in writing optimized code in C# 173
Boxing and unboxing overhead 174
String concatenation 177
Exception handling 179
For and foreach 181
Delegates 182

Summary 184
Designing Guidelines for .NET Core Application Performance 185

Coding principles 186
Naming convention 187
Code comments 189
One class per file 190
One logic per method 191

Design principles 192
KISS (Keep It Simple, Stupid) 193
YAGNI (You Aren't Gonna Need It) 194
DRY (Don't Repeat Yourself) 195
Separation of Concerns (SoC) 196
SOLID principles 197

Single Responsibility Principle 198
Open Closed principle 200

Parameters 201
Inheritance 202
Composition 204

Liskov principle 206
The Interface Segregation principle 209
The Dependency Inversion principle 212

Caching 214
Data structures 215
Communication 216

Using lighter interfaces 217
Minimizing message size 218
Queuing communication 219

Resource management 220
Avoiding improper use of threads 221
Disposing objects in a timely fashion 222
Acquiring resources when they are required 223

Concurrency 224
Summary 225

Memory Management Techniques in .NET Core 226
Memory allocation process overview 227
Analysing CLR internals through the SOS debugger in .NET Core 228
Memory fragmentation 234
Avoiding finalizers 236
Best practices for disposing of objects in .NET Core 238

Introduction to the IDisposable interface 239
What are unmanaged resources? 240
Using IDisposable 241
When to implement the IDisposable interface 243
Finalizer and Dispose 244

Summary 246
Securing and Implementing Resilience in .NET Core Applications 247

Introduction to resilient applications 248
Resilient policies 249

Reactive policies 250
Implementing the retry pattern 251
Implementing circuit breaker 254
Wrapping the circuit breaker with retry 258
Fallback policy with circuit breaker and retry 263

Proactive policies 265
Implementing timeout 266

Implementing caching 267
Implementing health checks 269

Storing sensitive information using Application Secrets 271
Protecting ASP.NET Core APIs 274

SSL (Secure Socket Layer) 275
Enabling SSL in an ASP.NET Core application 276

Preventing CSRF (Cross-Site Request Forgery) attacks 278
Reinforcing security headers 279
Adding the HTTP strict transport security header 281

Adding the X-Content-Type-Options header 282
Adding the X-Frame-Options header 283
Adding the X-Xss-Protection header 284
Adding the Content-Security-Policy header 285
Adding the referrer-policy header 286
Enabling CORS in the ASP.NET Core application 287

Authentication and authorization 289
Using ASP.NET Core Identity for authentication and authorization 290

Authentication 291
Authorization 292
Implementing authentication and authorization using the ASP.NET Core
Identity framework 293

Adding more properties in the user table 296
Summary 298

Microservices Architecture 299
Microservices architecture 300

Benefits of microservices architecture 302
Standard practice when developing microservices 303
Types of microservices 304

Stateless microservices 305
Stateful microservices 306

DDD 307
Data manipulation with microservices 308

Wrapping microservices behind an API gateway 309
Denormalizing data into a flat schema for read/query purposes 310

Consistency across business scenarios 311
Communication with microservices 312
Database architecture in microservices 313

Tables per service 314
Database per service 315
Challenges in segregating tables or databases per service 316

What is API composition? 317
CQRS 318

Developing microservices architecture with .NET Core 320
Creating a sample app in .NET Core using microservices architecture 321

Solution structure 322
Logical architecture 324
Developing a Core infrastructure project 326

Creating the BaseEntity class 327
The UnitOfWork pattern 328
Creating a repository interface 329
Logging 330
Creating the APIComponents infrastructure project 331

Developing an identity service for user authorization 333
OpenIddict connect flows 334
Creating the identity service project 335

Implementing the vendor service 343
Creating a vendor domain 344
Creating the vendor infrastructure 346
Creating the vendor service 349
Implementing the mediator pattern in the vendor service 350

Deploying microservices on Docker containers 354
What is Docker? 356
Using Docker with .NET Core 357
Running Docker images 360

Summary 361
Monitoring Application Performance Using Tools 362

Application performance key metrics 363
Average response time 364
Apdex scores 365
Percentage of errors 366
Request rate 367
Throughput/endpoints 368
CPU and memory usage 369

Tools and techniques to measure performance 370

Introducing App Metrics 371
Setting up App Metrics with ASP.NET Core 372
Tracking middleware 374

Adding tracking middleware 376

Setting up configuration 377
Adding visual reports 379

Setting up InfluxDB 380
Setting up the Windows subsystem for Linux 381
Installing InfluxDB 383

Installing Grafana 384
Adding the InfluxDB dashboard 385
Configuring InfluxDB 387
Modifying the Configure and ConfigureServices methods in Startup 388
Testing the ASP.NET Core App and reporting on the Grafana
dashboard 390

Summary 393
Other Books You May Enjoy 394

Leave a review - let other readers know what you think 396

	Title Page
	Copyright and Credits
	C# 7 and .NET Core 2.0 High Performance

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	What's New in .NET Core 2 and C# 7?
	Evolution of .NET
	New improvements in .NET Core 2.0
	Performance improvements
	RyuJIT compiler in .NET Core
	Profile guided optimization

	Simplified packaging

	Upgrading path from .NET Core 1.x to 2.0
	1. Install .NET Core 2.0
	2. Upgrade TargetFramework
	3. Update .NET Core SDK version
	4. Update .NET Core CLI
	Changes in ASP.NET Core Identity

	Exploring .NET Core CLI and New Project Templates
	Understanding .NET Standard
	Versioning of .NET Standard
	New improvements in .NET Standard 2.0
	More APIs in .NET Standard 2.0
	Compatibility mode

	Creating a .NET Standard library
	What comes with ASP.NET Core 2.0
	ASP.NET Core Razor Pages
	Automatic Page and View compilation on publishing
	Razor support for C# 7.1

	Simplified configuration for Application Insights
	Pooling connections in Entity Framework Core 2.0

	New features in C# 7.0
	Tuples
	Patterns
	Constant pattern
	Type pattern
	Var pattern

	Reference returns
	Expression bodied member extended
	Creating Local Functions
	Out variables
	Async Main

	Writing quality code
	Summary

	Understanding .NET Core Internals and Measuring Performance
	.NET Core internals
	CoreFX
	CoreCLR
	Understanding MSIL, CLI, CTS, and CLS
	How the CLR works
	From compilation to execution – Under the hood
	Garbage collection
	Generations in GC

	.NET Native and JIT compilation

	Utilizing multiple cores of the CPU for high performance
	How releasing builds increases performance
	Benchmarking .NET Core 2.0 applications
	Exploring BenchmarkDotNet
	How it works
	Setting parameters
	Memory diagnostics using BenchmarkDotnet
	Adding configurations

	Summary

	Multithreading and Asynchronous Programming in .NET Core
	Multithreading versus asynchronous programming
	Multithreading in .NET Core
	Multithreading caveats
	Threads in .NET Core
	Creating threads in .NET Core
	Thread lifetime
	The thread pool in .NET

	Thread synchronization
	Monitors

	Task parallel library (TPL)
	Creating a task using TPL
	Task-based asynchronous pattern (TAP)
	Naming convention
	Return type
	Parameters
	Exceptions
	Task status
	Task cancellation
	Task progress reporting

	Implementing TAP using compilers
	Implementing TAP with greater control over Task

	Design patterns for parallel programming
	Pipeline pattern
	Dataflow pattern
	Producer/consumer pattern
	Parallel.ForEach
	Parallel LINQ (PLINQ)

	Summary

	Data Structures and Writing Optimized Code in C#
	What are data structures?
	Understanding the use of Big O notation to measure the performance and complexity of an algorithm
	Logarithms

	Choosing the right data structure for performance optimization
	Arrays
	Lists
	Stacks
	Queue
	Linked lists
	Singly linked lists
	Doubly linked lists
	Circular linked lists

	Dictionaries, hashtables, and hashsets
	Generic lists

	Best practices in writing optimized code in C#
	Boxing and unboxing overhead
	String concatenation
	Exception handling
	For and foreach
	Delegates

	Summary

	Designing Guidelines for .NET Core Application Performance
	Coding principles
	Naming convention
	Code comments
	One class per file
	One logic per method

	Design principles
	KISS (Keep It Simple, Stupid)
	YAGNI (You Aren't Gonna Need It)
	DRY (Don't Repeat Yourself)
	Separation of Concerns (SoC)
	SOLID principles
	Single Responsibility Principle
	Open Closed principle
	Parameters
	Inheritance
	Composition

	Liskov principle
	The Interface Segregation principle
	The Dependency Inversion principle

	Caching
	Data structures
	Communication
	Using lighter interfaces
	Minimizing message size
	Queuing communication

	Resource management
	Avoiding improper use of threads
	Disposing objects in a timely fashion
	Acquiring resources when they are required

	Concurrency

	Summary

	Memory Management Techniques in .NET Core
	Memory allocation process overview
	Analysing CLR internals through the SOS debugger in .NET Core
	Memory fragmentation
	Avoiding finalizers
	Best practices for disposing of objects in .NET Core
	Introduction to the IDisposable interface
	What are unmanaged resources?
	Using IDisposable
	When to implement the IDisposable interface
	Finalizer and Dispose

	Summary

	Securing and Implementing Resilience in .NET Core Applications
	Introduction to resilient applications
	Resilient policies
	Reactive policies
	Implementing the retry pattern
	Implementing circuit breaker
	Wrapping the circuit breaker with retry
	Fallback policy with circuit breaker and retry

	Proactive policies
	Implementing timeout
	Implementing caching
	Implementing health checks

	Storing sensitive information using Application Secrets
	Protecting ASP.NET Core APIs
	SSL (Secure Socket Layer)
	Enabling SSL in an ASP.NET Core application

	Preventing CSRF (Cross-Site Request Forgery) attacks
	Reinforcing security headers
	Adding the HTTP strict transport security header
	Adding the X-Content-Type-Options header
	Adding the X-Frame-Options header
	Adding the X-Xss-Protection header
	Adding the Content-Security-Policy header
	Adding the referrer-policy header
	Enabling CORS in the ASP.NET Core application

	Authentication and authorization
	Using ASP.NET Core Identity for authentication and authorization

	Authentication
	Authorization
	Implementing authentication and authorization using the ASP.NET Core Identity framework
	Adding more properties in the user table

	Summary

	Microservices Architecture
	Microservices architecture
	Benefits of microservices architecture
	Standard practice when developing microservices
	Types of microservices
	Stateless microservices
	Stateful microservices

	DDD
	Data manipulation with microservices
	Wrapping microservices behind an API gateway
	Denormalizing data into a flat schema for read/query purposes

	Consistency across business scenarios
	Communication with microservices
	Database architecture in microservices
	Tables per service
	Database per service
	Challenges in segregating tables or databases per service

	What is API composition?
	CQRS

	Developing microservices architecture with .NET Core
	Creating a sample app in .NET Core using microservices architecture
	Solution structure
	Logical architecture
	Developing a Core infrastructure project
	Creating the BaseEntity class
	The UnitOfWork pattern
	Creating a repository interface
	Logging
	Creating the APIComponents infrastructure project

	Developing an identity service for user authorization
	OpenIddict connect flows
	Creating the identity service project

	Implementing the vendor service
	Creating a vendor domain
	Creating the vendor infrastructure
	Creating the vendor service
	Implementing the mediator pattern in the vendor service

	Deploying microservices on Docker containers
	What is Docker?
	Using Docker with .NET Core
	Running Docker images

	Summary

	Monitoring Application Performance Using Tools
	Application performance key metrics
	Average response time
	Apdex scores
	Percentage of errors
	Request rate
	Throughput/endpoints
	CPU and memory usage

	Tools and techniques to measure performance
	Introducing App Metrics
	Setting up App Metrics with ASP.NET Core
	Tracking middleware
	Adding tracking middleware
	Setting up configuration

	Adding visual reports
	Setting up InfluxDB
	Setting up the Windows subsystem for Linux
	Installing InfluxDB

	Installing Grafana
	Adding the InfluxDB dashboard
	Configuring InfluxDB
	Modifying the Configure and ConfigureServices methods in Startup
	Testing the ASP.NET Core App and reporting on the Grafana dashboard

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

